高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复值Hopfield神经网络的信号盲检测一步计算电路

洪庆辉 孙辰 肖平旦 韦正苗 杜四春

洪庆辉, 孙辰, 肖平旦, 韦正苗, 杜四春. 复值Hopfield神经网络的信号盲检测一步计算电路[J]. 电子与信息学报, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224
引用本文: 洪庆辉, 孙辰, 肖平旦, 韦正苗, 杜四春. 复值Hopfield神经网络的信号盲检测一步计算电路[J]. 电子与信息学报, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224
HONG Qinghui, SUN Chen, XIAO Pingdan, WEI Zhengmiao, DU Sichun. One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224
Citation: HONG Qinghui, SUN Chen, XIAO Pingdan, WEI Zhengmiao, DU Sichun. One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4123-4131. doi: 10.11999/JEIT240224

复值Hopfield神经网络的信号盲检测一步计算电路

doi: 10.11999/JEIT240224
基金项目: 国家自然科学基金(62234008, 62371186),湖湘青年英才项目(2023RC3103),湖南省自然科学基金(2023JJ30168, 2022JJ30160, 2021JJ40111),国家重点研发计划(2022YFB3903800)
详细信息
    作者简介:

    洪庆辉:男,副教授,研究方向为模拟存算一体电路设计及应用

    孙辰:男,硕士生,研究方向为复数神经网络电路设计

    肖平旦:男,博士生,研究方向为基于忆阻器的存内计算电路设计及其应用

    韦正苗:男,博士生,研究方向为模拟电路求解矩阵方程的新方法及其应用

    杜四春:男,副教授,研究方向为模拟/混合、射频集成电路设计

    通讯作者:

    杜四春 jt_dsc@hnu.edu.cn

  • 中图分类号: TN402

One-step Calculation Circuit of Blind Signal Detection using Complex-valued Hopfield Neural Network

Funds: The National Natural Science Foundation of China (62234008, 62371186), Huxiang Young Talents Project (2023RC3103), The Natural Science Foundation of Hunan Province(2023JJ30168, 2022JJ30160, 2021JJ40111), The National Key R&D Program of China (2022YFB3903800)
  • 摘要: 信号盲检测在大规模通信网络中具有重要的意义并得到了广泛的应用,如何快速得到信号盲检测结果是新一代实时通信网络的迫切需求。为此,该文从模拟电路的角度设计了一种能加速信号盲检测的复值Hopfield神经网络(CHNN)电路,该电路可一步完成大规模并行计算,提高信号盲检测速度,同时该电路可以通过调整忆阻器的电导和输入电压来实现可编程功能。Pspice仿真结果表明,该电路的计算精度可达99%以上,运行时间比Matlab软件仿真快3个数量级,此外,该电路具有良好的鲁棒性,即使在20%的噪声干扰下,仍能保持99%以上的计算精度。
  • 图  1  信号盲检测的处理过程

    图  2  K=8时的复值激活函数

    图  3  复值乘法电路

    图  4  复值激活函数电路

    图  5  复值激活函数电路输出结果

    图  6  信号盲检测CHNN电路

    图  7  忆阻器的两种模式

    图  8  CHNN电路处理流程图

    图  9  CHNN电路的输出结果

    图  10  电路精度及BER性能比较

    图  11  电压噪声波形及噪声干扰下电路的精度

    图  12  线电阻干扰下电路的精度

    图  13  不同随机误差条件下电路的平均精度

    图  14  忆阻器编程失败情况下电路的平均精度

    表  1  电路和软件计算时间比较(ms)

    输入信号数量计算时间
    PspiceMatlab
    5 阶0.0019.5
    10 阶0.0310.8
    20 阶0.0411.2
    40 阶0.0713.3
    80 阶0.1615.2
    下载: 导出CSV

    表  2  不同硬件的计算时间

    方式其他电路[19]FPGA[22]DSP[22]
    计算时间8.2$ \times $3.8$ \times $8.2$ \times $
    下载: 导出CSV
  • [1] SATO Y. A method of self-recovering equalization for multilevel amplitude-modulation systems[J]. IEEE Transactions on Communications, 1975, 23(6): 679–682. doi: 10.1109/TCOM.1975.1092854.
    [2] TONG Lang, XU Guanghan, and KAILATH T. Blind identification and equalization based on second-order statistics: A time domain approach[J]. IEEE Transactions on Information Theory, 1994, 40(2): 340–349. doi: 10.1109/18.312157.
    [3] LI Jin, FENG Dazheng, and LI Bingbing. Space-time blind equalization of dispersive MIMO systems driven by QAM signals[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4136–4148. doi: 10.1109/TVT.2018.2790432.
    [4] HU Rong, YU Shujuan, ZHANG Yun, et al. WSN blind detection based on SOS[C]. The 11th World Congress on Intelligent Control and Automation, Shenyang, China, 2014: 5763–5766. doi: 10.1109/WCICA.2014.7053704.
    [5] LV Zhisheng, FENG Bin, and TAN Li. An improved dual-mode blind equalization algorithm for QAM signals[C]. 2022 6th International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 2022: 283–287. doi: 10.1109/ICRAS55217.2022.9842274.
    [6] BLOCHBERGER M, ELVANDER F, ALI R, et al. Distributed cross-relation-based frequency-domain blind system identification using online-admm[C]. 2022 International Workshop on Acoustic Signal Enhancement (IWAENC), Bamberg, Germany, 2022: 1–5. doi: 10.1109/IWAENC53105.2022.9914714.
    [7] YUAN Kang, ZHUO Junnan, GAO Wei, et al. Diffusion constant modulus algorithm for blind equalization[C]. 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi’an, China, 2022: 1–6. doi: 10.1109/ICSPCC55723.2022.9984630.
    [8] XIAO Ying and DONG Yuhua. Blind equalization based on neural network under LS criterion by gradient iteration algorithm[C]. 2009 Fifth International Conference on Natural Computation, Tianjian, China, 2009: 91–94. doi: 10.1109/ICNC.2009.134.
    [9] ZHANG Yun and ZHANG Zhiyong. Blind 8PSK signals detection using discrete complex-valued Hopfield network[C]. 2010 IEEE 12th International Conference on Communication Technology, Nanjing, China, 2010: 983–986. doi: 10.1109/ICCT.2010.5688787.
    [10] WU Jinwen, JIN Haihong, YU Shujuan, et al. A novel blind detection algorithm based on multi-clustering complex neural network[C]. Proceedings of 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2021: 1017–1021. doi: 10.1109/IMCEC51613.2021.9482354.
    [11] MEI Ruru, WANG Zhugang, and HU Wanru. Robust blind equalization algorithm using convolutional neural network[J]. IEEE Signal Processing Letters, 2022, 29: 1569–1573. doi: 10.1109/LSP.2022.3189319.
    [12] XIE Xihai, FAN Chenzhao, WANG Shuai, et al. Varible step size multi-layer neural network blind equalization algorithm[C]. 2022 4th International Conference on Natural Language Processing (ICNLP), Xi’an, China, 2022: 477–481. doi: 10.1109/ICNLP55136.2022.00087.
    [13] ZHANG Hui, GU M, JIANG Xudong, et al. An optical neural chip for implementing complex-valued neural network[J]. Nature Communications, 2021, 12(1): 457. doi: 10.1038/s41467-020-20719-7.
    [14] YU Yaning and ZHANG Ziye. State estimation for complex-valued inertial neural networks with multiple time delays[J]. Mathematics, 2022, 10(10): 1725. doi: 10.3390/math10101725.
    [15] HONG Qinghui, FU Haotian, LIU Yiyang, et al. In-memory computing circuit implementation of complex-valued hopfield neural network for efficient portrait restoration[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023, 42(10): 3338–3351. doi: 10.1109/TCAD.2023.3242858.
    [16] NISHIKAWA I, IRITANI T, and SAKAKIBARA K. Improvements of the traffic signal control by complex-valued Hopfield networks[C]. The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, Canada, 2006: 459–464. doi: 10.1109/IJCNN.2006.246717.
    [17] 王雷敏, 程佳俊, 胡成, 等. 基于改进的忆阻器在字符联想记忆中的应用[J]. 电子与信息学报, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.

    WANG Leimin, CHENG Jiajun, HU Cheng, et al. Application of improved memristor in character associative memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.
    [18] UYKAN Z. Shadow-Cuts minimization/maximization and complex Hopfield neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(3): 1096–1109. doi: 10.1109/TNNLS.2020.2980237.
    [19] HONG Qinghui, LI Ya, and WANG Xiaoping. Memristive continuous Hopfield neural network circuit for image restoration[J]. Neural Computing and Applications, 2020, 32(12): 8175–8185. doi: 10.1007/s00521-019-04305-7.
    [20] YAN Renao, HONG Qinghui, WANG Chunhua, et al. Multilayer memristive neural network circuit based on online learning for license plate detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(9): 3000–3011. doi: 10.1109/TCAD.2021.3121347.
    [21] 肖平旦, 洪庆辉, 杜四春, 等. 基于忆阻器的可编程矩阵行列式求解电路设计及应用[J]. 中国科学: 信息科学, 2023, 53(5): 1008–1025. doi: 10.1360/SSI-2022-0229.

    XIAO Pingdan, HONG Qinghui, DU Sichun, et al. Design and application of a programmable matrix determinant-solving circuit based on memristors[J]. SCIENTIA SINICA Informationis, 2023, 53(5): 1008–1025. doi: 10.1360/SSI-2022-0229.
    [22] YI Qian. FPGA implementation of neural network accelerator[C]. 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 2018: 1903–1906. doi: 10.1109/IMCEC.2018.8469659.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  20
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-10-10
  • 网络出版日期:  2024-10-16
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回