高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IP软核硬件木马图谱特征分析检测方法

倪林 李霖 张帅 童思程 钱杨

倪林, 李霖, 张帅, 童思程, 钱杨. IP软核硬件木马图谱特征分析检测方法[J]. 电子与信息学报, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
引用本文: 倪林, 李霖, 张帅, 童思程, 钱杨. IP软核硬件木马图谱特征分析检测方法[J]. 电子与信息学报, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219
Citation: NI Lin, LI Lin, ZHANG Shuai, TONG Sicheng, QIAN Yang. Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4151-4160. doi: 10.11999/JEIT240219

IP软核硬件木马图谱特征分析检测方法

doi: 10.11999/JEIT240219
详细信息
    作者简介:

    倪林:男,博士生,讲师,研究方向为硬件安全、网络安全等

    李霖:男,研究方向为硬件安全等

    张帅:男,博士生,讲师,研究方向为硬件安全、网络安全等

    童思程:男,研究方向为硬件安全等

    钱杨:男,研究方向为硬件安全等

    通讯作者:

    张帅 zhangshuai16a@nudt.edu.cn

  • 中图分类号: TN915.08; TP309.1

Graph Features Analysis and Detection Method of IP Soft Core Hardware Trojan

  • 摘要: 随着集成电路技术的飞速发展,芯片在设计、生产和封装过程中,很容易被恶意植入硬件木马逻辑,当前IP软核的安全检测方法逻辑复杂、容易错漏且无法对加密IP软核进行检测。该文利用非可控IP软核与硬件木马寄存器传输级(RTL)代码灰度图谱的特征差异,提出一种基于图谱特征分析的IP软核硬件木马检测方法,通过图谱转换和图谱增强得到标准图谱,利用纹理特征提取匹配算法实现硬件木马检测。实验使用设计阶段被植入7类典型木马的功能逻辑单元为实验对象,检测结果显示7类典型硬件木马的检测正确率均达到了90%以上,图像增强后特征点匹配成功数量的平均增长率达到了13.24%,有效提高了硬件木马检测的效率。
  • 图  1  IP软核硬件木马检测流程

    图  2  硬件木马图谱库生成流程

    图  3  同一图像进行图像增强前后对比

    图  4  硬件木马图谱图像增强前后对比图

    图  5  成功匹配特征点的图谱纹理特征检测

    图  6  图像增强前后的图谱特征匹配结果

    图  7  不同分辨率下木马图谱特征点总数

    图  8  硬件木马图谱纹理特征匹配检测结果

    图  9  B19-T100硬件木马与含PIC16F84-T100样本的匹配检测结果

    图  10  B19-T100硬件木马与含B19-T100样本的匹配检测结果

    表  1  7种硬件木马分类原理特点对照表

    插入阶段抽象层次激活机制效果物理特性
    B19-T100设计阶段门级基于内部时间的触发改变功能紧密、功能性、布局相同
    PIC16F84-T100设计阶段寄存器传输级别内部条件触发服务拒绝功能性
    s35932-T100设计阶段门级内部条件触发改变功能,泄露信息功能性
    AES-T100设计阶段寄存器传输级别始终激活泄露信息功能性
    wb_conmax-T100设计阶段门级内部条件触发改变功能,拒绝服务功能性
    BasicRSA-T100设计阶段寄存器传输级别外部用户输入触发泄露信息功能性
    RS232-T100设计阶段寄存器传输级别内部条件触发拒绝服务功能性
    下载: 导出CSV

    表  2  7种木马图谱图像增强前后的图谱特征提取匹配结果

    木马类型图像增强前图像增强后
    特征点总数匹配成功的数量特征点总数匹配成功的数量
    B19-T10046445048
    PIC16F84-T1006666
    s35932-T10040374139
    AES-T10022222525
    wb_conmax-T1001071311
    BasicRSA-T10063496551
    RS232-T10051305231
    下载: 导出CSV

    表  3  BasicRSA-T100在宽度为25不同高度下的匹配结果

    255075100125150175200
    特征点总数5462626568686868
    匹配成功的数量2737475161525252
    匹配成功率(%)50.0059.6875.8178.4689.7176.4776.4776.47
    下载: 导出CSV

    表  4  BasicRSA-T100在高度为100不同宽度下的匹配结果

    255075100125150175200
    特征点总数6560818080808080
    匹配成功的数量5144656767676767
    匹配成功率(%)78.4673.3380.2583.7583.7583.7583.7583.75
    下载: 导出CSV
  • [1] 杨达明, 黄姣英, 高成. 工艺偏差影响下硬件木马检测功率分析方法[J]. 计算机工程与应用, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.

    YANG Daming, HUANG Jiaoying, and GAO Cheng. Power analysis method of hardware Trojan detection considering process variation[J]. Computer Engineering and Applications, 2018, 54(24): 1–5,45. doi: 10.3778/j.issn.1002-8331.1810-0197.
    [2] 刘志强, 张铭津, 池源, 等. 一种深度学习的硬件木马检测算法[J]. 西安电子科技大学学报, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.

    LIU Zhiqiang, ZHANG Mingjin, CHI Yuan, et al. Hardware Trojan detection algorithm based on deep learning[J]. Journal of Xidian University, 2019, 46(6): 37–45. doi: 10.19665/j.issn1001-2400.2019.06.006.
    [3] 成祥, 李磊, 程伟. 基于RTL级硬件木马的检测方法[J]. 微电子学与计算机, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.

    CHENG Xiang, LI Lei, and CHENG Wei. A detection method of hardware Trojans based on RTL[J]. Microelectronics & Computer, 2017, 34(3): 56–60. doi: 10.19304/j.cnki.issn1000-7180.2017.03.012.
    [4] SANKAR V and NIRMALA DEVI M. Efficient hardware Trojan detection using generic feature extraction and weighted ensemble method[C]. The ICACIT 2021 on Advanced Computing and Intelligent Technologies, Singapore, Singapore, 2022: 165–181. doi: 10.1007/978-981-16-2164-2_14.
    [5] 谢俊, 周慧忠, 厉小燕, 等. 基于旁路分析的集成电路芯片硬件木马检测分析[J]. 电子技术与软件工程, 2022(18): 112–115.

    XIE Jun, ZHOU Huizhong, LI Xiaoyan, et al. Hardware Trojan detection and analysis of integrated circuit chips based on bypass analysis[J]. Electronic Technology and Software Engineering, 2022(18): 112–115.
    [6] 徐皓, 易茂祥, 金礼玉, 等. 电路分区自比较的硬件木马检测方法[J]. 合肥工业大学学报: 自然科学版, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.

    XU Hao, YI Maoxiang, JIN Liyu, et al. Hardware Trojan detection method based on circuit partition self-comparison[J]. Journal of Hefei University of Technology: Natural Science, 2022, 45(12): 1630–1636. doi: 10.3969/j.issn.1003-5060.2022.12.007.
    [7] 赵毅强, 李博文, 马浩诚, 等. 基于混合特征分析的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.

    ZHAO Yiqiang, LI Bowen, MA Haocheng, et al. Hardware Trojan detection method based on combined features analysis[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2021, 49(5): 1–6. doi: 10.13245/j.hust.210501.
    [8] JOSE F, PRIYATHARISHINI M, and NIRMALA DEVI M. Hardware Trojan detection using deep learning-generative adversarial network and stacked auto encoder neural networks[C]. The ICT Analysis and Applications, Singapore, Singapore, 2022: 203–210. doi: 10.1007/978-981-16-5655-2_19.
    [9] 李林源, 徐金甫, 严迎建, 等. 基于多维特征的门级硬件木马检测技术[J]. 计算机工程与应用, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.

    LI Linyuan, XU Jinfu, YAN Yingjian, et al. Hardware Trojan detection for gate-level netlists based on multidimensional features[J]. Computer Engineering and Applications, 2023, 59(18): 278–284. doi: 10.3778/j.issn.1002-8331.2206-0101.
    [10] 杨欢, 李海明. MLDet: 基于结构特征和XGBoost的硬件木马检测方法[J]. 计算机应用与软件, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.

    YANG Huan and LI Haiming. MLDet: Hardware Trojan detection method based on structural features and XGBoost[J]. Computer Applications and Software, 2023, 40(11): 302–307. doi: 10.3969/j.issn.1000-386x.2023.11.045.
    [11] 史江义, 温聪, 刘鸿瑾, 等. 基于图神经网络的门级硬件木马检测方法[J]. 电子与信息学报, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.

    SHI Jiangyi, WEN Cong, LIU Hongjin, et al. Hardware Trojan detection for gate-level netlists based on graph neural network[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3253–3262. doi: 10.11999/JEIT221201.
    [12] PAN Zhixin and MISHRA P. Hardware Trojan detection using side -channel analysis[M]. PAN Zhixin and MISHRA P. Explainable AI for Cybersecurity. Cham: Springer, 2023: 123–140. doi: 10.1007/978-3-031-46479-9_6.
    [13] JYOTHI V and RAJENDRAN J. Hardware Trojan attacks in FPGA and protection approaches[M]. BHUNIA S and TEHRANIPOOR M. The Hardware Trojan War: Attacks, Myths, and Defenses. Cham: Springer, 2018: 345–368. doi: 10.1007/978-3-319-68511-3_14.
    [14] ABDELLATIF K M, CORNESSE C, FOURNIER J, et al. New partitioning approach for hardware Trojan detection using side-channel measurements[C]. Proceedings of the 12th International Symposium on Applied Reconfigurable Computing, Mangaratiba, Brazil, 2016: 171–182. doi: 10.1007/978-3-319-30481-6_14.
    [15] VINOD G, RAMESH S R, and NIRMALA DEVI M. Simulation based hardware Trojan detection using path delay analysis[M]. RANGANATHAN G, FERNANDO X, and ROCHA Á. Inventive Communication and Computational Technologies. Singapore: Springer, 2022: 853–863. doi: 10.1007/978-981-19-4960-9_64.
    [16] NOZAWA K, HASEGAWA K, HIDANO S, et al. Adversarial examples for hardware-Trojan detection at gate-level netlists[C]. Proceedings of the ESORICS 2019 International Workshops, CyberICPS, SECPRE, SPOSE, and ADIoT on Computer Security, Luxembourg City, Luxembourg, 2020: 341–359. doi: 10.1007/978-3-030-42048-2_22.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  39
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-09-05
  • 网络出版日期:  2024-09-28
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回