高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实值子空间线性变换的非均匀圆形阵列高效二维测向方法

孟祥天 经哲涵 曹丙霞 沙明辉 朱应申 闫锋刚

孟祥天, 经哲涵, 曹丙霞, 沙明辉, 朱应申, 闫锋刚. 基于实值子空间线性变换的非均匀圆形阵列高效二维测向方法[J]. 电子与信息学报, 2024, 46(11): 4328-4334. doi: 10.11999/JEIT240188
引用本文: 孟祥天, 经哲涵, 曹丙霞, 沙明辉, 朱应申, 闫锋刚. 基于实值子空间线性变换的非均匀圆形阵列高效二维测向方法[J]. 电子与信息学报, 2024, 46(11): 4328-4334. doi: 10.11999/JEIT240188
MENG Xiangtian, JING Zhehan, CAO Bingxia, SHA Minghui, ZHU Yingshen, YAN Fenggang. Efficient 2-D Direction Finding Based on the Real-valued Subspace Linear Transformation with Nonuniform Circular Array[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4328-4334. doi: 10.11999/JEIT240188
Citation: MENG Xiangtian, JING Zhehan, CAO Bingxia, SHA Minghui, ZHU Yingshen, YAN Fenggang. Efficient 2-D Direction Finding Based on the Real-valued Subspace Linear Transformation with Nonuniform Circular Array[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4328-4334. doi: 10.11999/JEIT240188

基于实值子空间线性变换的非均匀圆形阵列高效二维测向方法

doi: 10.11999/JEIT240188
基金项目: 国家自然科学基金(62171150),泰山学者工程专项经费(tsqn202211087),山东省自然科学基金(ZR2023MF091),航空科学基金(2023Z037077002).
详细信息
    作者简介:

    孟祥天:男,讲师,研究方向为阵列信号处理、反辐射制导

    经哲涵:男,博士生,研究方向为阵列信号处理

    曹丙霞:女,副教授,研究方向为阵列信号处理、极化雷达技术

    沙明辉:男,研究员,研究方向为雷达系统设计、雷达抗干扰技术

    朱应申:男,高级工程师,研究方向为电子对抗、技术侦察

    闫锋刚:男,教授,研究方向为雷达信号处理,反辐射制导

    通讯作者:

    曹丙霞 cbxhit@163.com

  • 中图分类号: TN958

Efficient 2-D Direction Finding Based on the Real-valued Subspace Linear Transformation with Nonuniform Circular Array

Funds: The National Natural Science Foundation of China (62171150), Taishan Scholar Special Funding Project of Shandong Province (tsqn202211087), Shandong Provincial Natural Science Foundation (ZR2023MR091), The Aeronautical Science Foundation of China (2023Z037077002)
  • 摘要: 由于均匀圆阵(UCA)的阵列流型不具有范德蒙结构,通常采用模式空间方法构造虚拟线性阵列,因此,UCA阵列下使用结构变换已经是2维测向的必要基本假设。该文通过对虚拟信号模型进行特征分析,避免了线性阵列的结构变换,提出一种适用于UCA和非均匀圆阵(NUCA)的实值高效2维测向方法。因此,新方法利用经前/后向平滑的阵列协方差矩阵(FBACM)以及分离实虚部后的和差变换,获得了维度相互适配的阵列流型和实值子空间,理论揭示了所获实值子空间与原始复值子空间的线性张成关系,构建了无虚假目标的空间谱,且可以推广至NUCA,增强了实值算法对于圆形阵列结构的适应性。同时,理论揭示了上述方法具有秩增强优势。数值仿真实验表明,与传统UCA阵列下的模式空间方法相比,该文所提出方法能够在显着降低复杂性的情况下,提供相似的估计性能和更好的角度分辨率。同时,在考虑幅度和相位误差等情况时,所提方法具有较强的鲁棒性。
  • 图  1  两种圆阵的阵元位置示意图

    图  2  UCA阵列不同SNR下角度估计的均方根误差

    图  3  不同圆形阵列下方位角的分辨能力

    图  4  UCA阵列不同快拍数下矩阵的秩

    图  5  存在幅相误差下圆形阵列方位角估计误差

    表  1  不同搜索类算法下CPU运行时间(s)

    UCA-MUSICUCA-CaponUCA-RB-MUSICUCA-RV-MUSIC
    M=80.45280.46140.22700.2342
    M=160.74010.74770.35930.3621
    M=241.06921.08020.52080.5217
    M=321.37051.38440.64910.6496
    下载: 导出CSV
  • [1] CONG Jingyu, WANG Xianpeng, LAN Xiang, et al. A generalized noise reconstruction approach for robust DOA estimation[J]. IEEE Transactions on Radar Systems, 2023, 1: 382–394. doi: 10.1109/TRS.2023.3299184.
    [2] SHEN Ji, YI Jianxin, WAN Xianrong, et al. DOA estimation considering effect of adaptive clutter rejection in passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108913. doi: 10.1109/TGRS.2022.3141219.
    [3] WEN Fangqing, GUI Guan, GACANIN H, et al. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3071–3083. doi: 10.1109/TWC.2022.3215965.
    [4] ZHANG Zongyu, SHI Zhiguo, and GU Yujie. Ziv-zakai bound for DOAs estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 136–149. doi: 10.1109/TSP.2022.3229946.
    [5] 马健钧, 魏少鹏, 马晖, 等. 基于ADMM的低仰角目标二维DOA估计算法[J]. 电子与信息学报, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.

    MA Jianjun, WEI Shaopeng, MA Hui, et al. Two-dimensional DOA estimation for low-angle target based on ADMM[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2859–2866. doi: 10.11999/JEIT210582.
    [6] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
    [7] BARABELL A. Improving the resolution performance of eigenstructure-based direction-finding algorithms[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Boston, USA, 1983: 336–339. doi: 10.1109/ICASSP.1983.1172124.
    [8] SWINDLEHURST A L, OTTERSTEN B, ROY R, et al. Multiple invariance ESPRIT[J]. IEEE Transactions on Signal Processing, 1992, 40(4): 867–881. doi: 10.1109/78.127959.
    [9] DAVIES D E N. A transformation between the phasing techniques required for linear and circular aerial arrays[J]. Proceedings of the Institution of Electrical Engineers, 1965, 112(11): 2041–2045. doi: 10.1049/piee.1965.0340.
    [10] MATHEWS C P and ZOLTOWSKI M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2395–2407. doi: 10.1109/78.317861.
    [11] BELLONI F and KOIVUNEN V. Unitary root-MUSIC technique for uniform circular array[C]. The 3rd IEEE International Symposium on Signal Processing and Information Technology, Darmstadt, Germany, 2003: 451–454. doi: 10.1109/ISSPIT.2003.1341155.
    [12] MATHEWS C P and ZOLTOWSKI M D. Performance analysis of the UCA-ESPRIT algorithm for circular ring arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9): 2535–2539. doi: 10.1109/78.317881.
    [13] WU Yuntao, AMIR L, JENSEN J R, et al. Joint pitch and DOA estimation using the ESPRIT method[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(1): 32–45. doi: 10.1109/taslp.2014.2367817.
    [14] 闫锋刚, 沈毅, 刘帅, 等. 高效超分辨波达方向估计算法综述[J]. 系统工程与电子技术, 2015, 37(7): 1465–1475. doi: 10.3969/j.issn.1001-506X.2015.07.01.

    YAN Fenggang, SHEN Yi, LIU Shuai, et al. Overview of efficient algorithms for super-resolution DOA estimates[J]. Systems Engineering and Electronics, 2015, 37(7): 1465–1475. doi: 10.3969/j.issn.1001-506X.2015.07.01.
    [15] HUARNG K C and YEH C C. A unitary transformation method for angle-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 975–977. doi: 10.1109/78.80927.
    [16] YAN Fenggang, JIN Ming, LIU Shuai, et al. Real-valued MUSIC for efficient direction estimation with arbitrary array geometries[J]. IEEE Transactions on Signal Processing, 2014, 62(6): 1548–1560. doi: 10.1109/TSP.2014.2298384.
    [17] YAN Fenggang, YAN Xuewei, SHI Jun, et al. MUSIC-like direction of arrival estimation based on virtual array transformation[J]. Signal Processing, 2017, 139: 156–164. doi: 10.1016/j.sigpro.2017.04.017.
    [18] 王兆彬, 巩朋成, 邓薇, 等. 联合协方差矩阵重构和ADMM的鲁棒波束形成[J]. 哈尔滨工业大学学报, 2023, 55(4): 64–71. doi: 10.11918/202107104.

    WANG Zhaobin, GONG Pengcheng, DENG Wei, et al. Robust beamforming by joint covariance matrix reconstruction and ADMM[J]. Journal of Harbin Institute of Technology, 2023, 55(4): 64–71. doi: 10.11918/202107104.
    [19] WILKES D M, MORGERA S D, NOOR F, et al. A hermitian toeplitz matrix is unitarily similar to a real toeplitz-plus-hankel matrix[J]. IEEE Transactions on Signal Processing, 1991, 39(9): 2146–2148. doi: 10.1109/78.134459.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  28
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-20
  • 修回日期:  2024-10-03
  • 网络出版日期:  2024-10-15
  • 刊出日期:  2024-11-10

目录

    /

    返回文章
    返回