高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5G毫米波反向阵极简构架与CMOS芯片实现

郭嘉诚 胡三明 沈一竹 钱昀 胡楚悠 黄永明 尤肖虎

郭嘉诚, 胡三明, 沈一竹, 钱昀, 胡楚悠, 黄永明, 尤肖虎. 5G毫米波反向阵极简构架与CMOS芯片实现[J]. 电子与信息学报, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143
引用本文: 郭嘉诚, 胡三明, 沈一竹, 钱昀, 胡楚悠, 黄永明, 尤肖虎. 5G毫米波反向阵极简构架与CMOS芯片实现[J]. 电子与信息学报, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143
GUO Jiacheng, HU Sanming, SHEN Yizhu, QIAN Yun, HU Chuyou, HUANG Yongming, YOU Xiaohu. Simplified Architecture of 5G Millimeter-wave Retrodirective Array and Its Implementation in CMOS Chips[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143
Citation: GUO Jiacheng, HU Sanming, SHEN Yizhu, QIAN Yun, HU Chuyou, HUANG Yongming, YOU Xiaohu. Simplified Architecture of 5G Millimeter-wave Retrodirective Array and Its Implementation in CMOS Chips[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1570-1581. doi: 10.11999/JEIT240143

5G毫米波反向阵极简构架与CMOS芯片实现

doi: 10.11999/JEIT240143
基金项目: 国家重点研发计划(2019YFB2204701),国家自然科学基金(61831006,62250610223)
详细信息
    作者简介:

    郭嘉诚:男,博士,研究方向为射频、毫米波集成电路设计

    胡三明:男,教授,博士生导师,研究方向为射频、毫米波集成电路设计

    沈一竹:女,教授,博士生导师,研究方向为毫米波电路及天线

    钱昀:女,博士生,研究方向为射频、毫米波集成电路设计

    胡楚悠:女,硕士,研究方向为射频、毫米波集成电路设计

    黄永明:男,教授,博士生导师,研究方向为下一代移动通信技术

    尤肖虎:男,教授,中国科学院院士,研究方向为未来移动通信理论与技术、智能信号处理与通信

    通讯作者:

    尤肖虎 xhyu@seu.edu.cn

  • 中图分类号: TN43

Simplified Architecture of 5G Millimeter-wave Retrodirective Array and Its Implementation in CMOS Chips

Funds: The National Key Research and Development Program of China (2019YFB2204701), The National Natural Science Foundation of China (61831006, 62250610223)
  • 摘要: 该文首次报道了一种极简构架的5G毫米波反向阵设计原理及其CMOS芯片实现技术。该毫米波反向阵极简构架,利用次谐波混频器提供相位共轭和阵列反向功能,无需移相电路及波束控制系统,便可实现波束自动回溯移动通信功能。该文采用国产0.18 μm CMOS工艺研制了5G毫米波反向阵芯片,包括发射前端、接收前端及跟踪锁相环等核心模块,其中发射及接收前端芯片采用次谐波混频及跨导增强等技术,分别实现了19.5 dB和18.7 dB的实测转换增益。所实现的跟踪锁相环芯片具备双模工作优势,可根据不同参考信号支持幅度调制及相位调制,实测输出信号相噪优于–125 dBc/Hz@100 kHz。该文给出的测试结果验证了所提5G毫米波反向阵通信架构及其CMOS芯片实现的可行性,从而为5G/6G毫米波通信探索了一种架构极简、成本极低、拓展性强的新方案。
  • 图  1  反向阵基本架构

    图  2  本文所提5G毫米波反向阵架构

    图  3  接收前端原理图

    图  4  带有补偿电感的等效电路

    图  5  本振网络输出的瞬时仿真波形

    图  6  发射前端原理图

    图  7  5G毫米波反向阵跟踪锁相环结构框图

    图  8  跟踪锁相环中的整形电路

    图  9  5G毫米波频段接收前端芯片显微照片

    图  10  下变频次谐波混频器增益测试结果

    图  11  接收前端增益测试结果

    图  12  5G毫米波频段发射前端芯片显微照片

    图  13  上变频混频器增益测试结果

    图  14  发射前端增益测试结果

    图  15  5G毫米波频段跟踪相环芯片显微照片

    图  16  跟踪锁相环芯片测试

    图  17  跟踪锁相环芯片测试结果

    图  18  跟踪锁相环芯片通信性能测试设置

    图  19  AM调制模式下的测试波形

    图  20  QPSK调制模式下测得的星座图

    表  1  下变频次谐波混频器性能对比总结

    文献[27] 文献[28] 文献[29] 本文
    工艺 0.13 μm CMOS GaInP/GaAs 0.18 μm CMOS 0.18 μm CMOS
    频率(GHz) 8.65 10.00 21.00~40.00 22.00~29.00
    增益(dB) 6.0 10.0 –8.2 7.0
    输入P1dB(dBm) –18.0 –12.0 –4.0 –11.4
    功耗(mW) 0.6 20.0 74.6 30.6
    下载: 导出CSV

    表  2  低噪声放大器性能对比总结

    文献[30]文献[31]文献[32]本文
    工艺0.18 μm CMOS0.18 μm CMOS0.13 μm CMOS0.18 μm CMOS
    中心频率(GHz)22.025.724.025.0
    增益(dB)15.08.912.112.1
    噪声系数(dB)6.006.9310.407.30
    功耗(mW)16.030.012.034.2
    下载: 导出CSV

    表  3  上变频次谐波混频器性能对比总结

    文献[33] 文献[34] 文献[35] 本文
    工艺 65 nm CMOS 0.15 μm CMOS 65 nm CMOS 0.18 μm CMOS
    频率(GHz) 27.0~44.0 24.0~44.0 19.5~31.5 23.5~29.5
    增益(dB) –10.5 10.5 –5.1 6.0
    输出P1dB(dBm) –9.0 –11.5 –15.4 –11.8
    功耗(mW) 0 225.0 55.6 23.4
    下载: 导出CSV

    表  4  功率放大器性能对比总结

    文献[36]文献[37]本文
    工艺0.18 μm CMOS0.18 μm CMOS0.18 μm CMOS
    中心频率(GHz)242425
    增益(dB)7.011.014.5
    输出P1(dB)11.010.04.5
    功耗(mW)10042118
    下载: 导出CSV

    表  5  反向阵构架对比总结

    文献[38] 文献[39] 文献[10] 文献[19] 文献[22] 本文
    芯片集成 × × ×
    工作频段(GHz) 6.0 5.8 1.5 2.4 2.4 5G毫米波(26.0 GHz频段)
    调制方式及速率 BPSK 78.125 kB/s AM 10 MB/s 16QAM 151.2 kB/s × AM 100 kB/s AM 100 kB/s
    QPSK 1 MB/s
    下载: 导出CSV
  • [1] YU Yiming, CHEN Zhilin, ZHAO Chenxi, et al. A 39 GHz dual-channel transceiver chipset with an advanced LTCC package for 5G multi-beam MIMO systems[J]. Engineering, 2023, 22: 125–140. doi: 10.1016/j.eng.2022.04.023.
    [2] BOCCARDI F, HEATH R W, LOZANO A, et al. Five disruptive technology directions for 5G[J]. IEEE Communications Magazine, 2014, 52(2): 74–80. doi: 10.1109/MCOM.2014.6736746.
    [3] RAPPAPORT T S, SUN Shu, MAYZUS R, et al. Millimeter wave mobile communications for 5G cellular: It will work![J]. IEEE Access, 2013, 1: 335–349. doi: 10.1109/ACCESS.2013.2260813.
    [4] RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522.
    [5] YI Yongran, ZHAO Dixian, ZHANG Jiajun, et al. A 24–29.5-GHz highly linear phased-array transceiver front-end in 65-nm CMOS supporting 800-MHz 64-QAM and 400-MHz 256-QAM for 5G new radio[J]. IEEE Journal of Solid-State Circuits, 2022, 57(9): 2702–2718. doi: 10.1109/JSSC.2022.3169588.
    [6] WANG Yun, WU Rui, PANG Jian, et al. A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(5): 1249–1269. doi: 10.1109/JSSC.2020.2980509.
    [7] SKOLNIK M and KING D. Self-phasing array antennas[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 142–149. doi: 10.1109/TAP.1964.1138179.
    [8] FUSCO V and BUCHANAN N. Developments in retrodirective array technology[J]. IET Microwaves, Antennas & Propagation, 2013, 7(2): 131–140. doi: 10.1049/iet-map.2012.0565.
    [9] FUSCO V F and KARODE S L. Self-phasing antenna array techniques for mobile communications applications[J]. Electronics & Communication Engineering Journal, 1999, 11(6): 279–286. doi: 10.1049/ecej:19990608.
    [10] BUCHANAN N B, FUSCO V F, and VAN DER VORST M. SATCOM retrodirective array[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(5): 1614–1621. doi: 10.1109/TMTT.2016.2541121.
    [11] BRENNAN P V. An experimental and theoretical study of self-phased arrays in mobile satellite communications[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1370–1376. doi: 10.1109/8.43556.
    [12] DING Yuan, BUCHANAN N B, FUSCO V F, et al. Analog/digital hybrid delay-locked-loop for K/Ka band satellite retrodirective arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3323–3331. doi: 10.1109/TMTT.2018.2829714.
    [13] REN Y J and CHANG Kai. New 5. 8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(7): 2970–2976. doi: 10.1109/TMTT.2006.877422.
    [14] GUO Jiacheng, WANG Jun, and HU Sanming. Circularly polarized retrodirective array for far-field wireless power transfer[C]. 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019: 429–431. doi: 10.1109/APMC46564.2019.9038263.
    [15] CHAN P and FUSCO V. Bi-static 5.8 GHz RFID range enhancement using retrodirective techniques[C]. 2011 41st European Microwave Conference, Manchester, UK, 2011: 976–979. doi: 10.23919/EuMC.2011.6101753.
    [16] DARDARI D, LOTTI M, DECARLI N, et al. Establishing multi-user MIMO communications automatically using retrodirective arrays[J]. IEEE Open Journal of the Communications Society, 2023, 4: 1396–1416. doi: 10.1109/OJCOMS.2023.3289326.
    [17] ETTORRE M, ALOMAR W A, and GRBIC A. 2-D Van Atta array of wideband, wideangle slots for radiative wireless power transfer systems[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9): 4577–4585. doi: 10.1109/TAP.2018.2851197.
    [18] LI Ying and JANDHYALA V. Design of retrodirective antenna arrays for short-range wireless power transmission[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 206–211. doi: 10.1109/TAP.2011.2167897.
    [19] GUO Jiacheng, SHEN Yizhu, YE Kai, et al. Differential retrodirective array with integrated circuits in low-cost 0.18 μm CMOS for automatic tracking[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1587–1590. doi: 10.1109/TAP.2021.3111206.
    [20] VAN ATTA L G. Electromagnetic reflector[P]. U. S. , 2908002, 1959.
    [21] PON C. Retrodirective array using the heterodyne technique[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(2): 176–180. doi: 10.1109/TAP.1964.1138191.
    [22] GUO Jiacheng, SHEN Yizhu, DONG Guoqing, et al. A retrodirective array enabled by CMOS chips for two-way wireless communication with automatic beam tracking[J]. Engineering, 2024. doi: 10.1016/j.eng.2023.12.010.
    [23] CHEN W K. Theory and design of broadband matching networks: Applied electricity and electronics[M]. Oxford: Pergamon, 2013.
    [24] CAULTON M, HERSHENOV B, KNIGHT S P, et al. Status of lumped elements in microwave integrated circuits-present and future[J]. IEEE Transactions on Microwave Theory and Techniques, 1971, 19(7): 588–599. doi: 10.1109/TMTT.1971.1127586.
    [25] QIAN Yun, SHEN Yizhu, and HU Sanming. Millimeter-wave CMOS low-noise amplifier with high gain and compact footprint[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(6): 699–702. doi: 10.1109/LMWT.2023.3246166.
    [26] 胡楚悠. 硅基毫米波功率放大器芯片设计[D]. [硕士论文]. 东南大学, 2022. doi: 10.27014/d.cnki.gdnau.2022.003381.

    HU Chuyou. Design of silicon-based millimeter-wave power amplifier chip[D]. [Master dissertation], Southeast University, 2022. doi: 10.27014/d.cnki.gdnau.2022.003381.
    [27] HE Shan and SAAVEDRA C E. An ultra-low-voltage and low-power ×2 subharmonic downconverter mixer[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(2): 311–317. doi: 10.1109/TMTT.2011.2178259.
    [28] WU T H and MENG C. 10-GHz highly symmetrical sub-harmonic Gilbert mixer using GaInP/GaAs HBT technology[J]. IEEE Microwave and Wireless Components Letters, 2007, 17(5): 370–372. doi: 10.1109/LMWC.2007.895717.
    [29] HUNG S H, LEE Y C, SU Chunchi, et al. High-isolation millimeter-wave subharmonic monolithic mixer with modified quasi-circulator[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(3): 1140–1149. doi: 10.1109/TMTT.2013.2244229.
    [30] GUAN Xiang and HAJIMIRI A. A 24-GHz CMOS front-end[J]. IEEE Journal of Solid-State Circuits, 2004, 39(2): 368–373. doi: 10.1109/JSSC.2003.821783.
    [31] YU K W, LU Y L, CHANG D C, et al. K-band low-noise amplifiers using 0.18 μm CMOS technology[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(3): 106–108. doi: 10.1109/LMWC.2004.825175.
    [32] HSIEH K A, WU H S, TSAI K H, et al. A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1649–1657. doi: 10.1109/TMTT.2012.2191303.
    [33] TSAI J H, HSIEH Y Y, and LIU W H. A 27–44 GHz CMOS dual-ring subharmonic up-conversion mixer with linearization technique[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 347–350. doi: 10.1109/LMWC.2021.3124587.
    [34] SU Chunchi, LIU C H, LIN C M, et al. A 24–44 GHz broadband subharmonic mixer with novel isolation-enhanced circuit[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(2): 124–126. doi: 10.1109/LMWC.2014.2382688.
    [35] LEE H S, MYEONG J, and MIN B W. A 26GHz CMOS 3× subharmonic mixer with a fundamental frequency rejection technique[J]. IEEE Access, 2020, 8: 122986–122996. doi: 10.1109/ACCESS.2020.3007316.
    [36] KOMIJANI A, NATARAJAN A, and HAJIMIRI A. A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2005, 40(9): 1901–1908. doi: 10.1109/JSSC.2005.848143.
    [37] MOSALAM H, ALLAM A, ABDEL-RAHMAN A, et al. A high-efficiency good linearity 21 to 26.5 GHz fully integrated power amplifier using 0.18 μm CMOS technology[C]. 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 2016: 1–4. doi: 10.1109/MWSCAS.2016.7870065.
    [38] DIDOMENICO L D and REBEIZ G M. Digital communications using self-phased arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(4): 677–684. doi: 10.1109/22.915442.
    [39] LEONG K M K H, WANG Yuanxun, and ITOH T. A full duplex capable retrodirective array system for high-speed beam tracking and pointing applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(5): 1479–1489. doi: 10.1109/TMTT.2004.827025.
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  281
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-04-29
  • 网络出版日期:  2024-05-12
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回