高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进化网络模型: 无先验知识的自适应自监督持续学习

刘壮 宋祥瑞 赵斯桓 施雅 杨登封

刘壮, 宋祥瑞, 赵斯桓, 施雅, 杨登封. 进化网络模型: 无先验知识的自适应自监督持续学习[J]. 电子与信息学报, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142
引用本文: 刘壮, 宋祥瑞, 赵斯桓, 施雅, 杨登封. 进化网络模型: 无先验知识的自适应自监督持续学习[J]. 电子与信息学报, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142
LIU Zhuang, SONG Xiangrui, ZHAO Sihuan, SHI Ya, YANG Dengfeng. EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142
Citation: LIU Zhuang, SONG Xiangrui, ZHAO Sihuan, SHI Ya, YANG Dengfeng. EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3256-3266. doi: 10.11999/JEIT240142

进化网络模型: 无先验知识的自适应自监督持续学习

doi: 10.11999/JEIT240142
基金项目: 国家自然科学基金 (72272028)
详细信息
    作者简介:

    刘壮:男,博士,副教授,研究方向为迁移学习、机器学习、金融科技、大模型等

    赵斯桓:男,硕士生,研究方向为机器学习、图像识别

    施雅:女,博士生,研究方向为迁移学习、机器学习、大模型

    杨登封:男,硕士生,研究方向为迁移学习、机器学习

    通讯作者:

    刘壮 liuzhuang@dufe.edu.cn

  • 中图分类号: TN911.7; TP391

EvolveNet: Adaptive Self-Supervised Continual Learning without Prior Knowledge

Funds: The National Natural Science Foundation of China (72272028)
  • 摘要: 无监督持续学习(UCL)是指能够随着时间的推移而学习,同时在没有监督的情况下记住以前的模式。虽然在这个方向上取得了很大进展,但现有工作通常假设对于即将到来的数据有强大的先验知识(例如,知道类别边界),而在复杂和不可预测的开放环境中可能无法获得这些知识。受到现实场景的启发,该文提出一个更实际的问题设置,称为无先验知识的在线自监督持续学习。所提设置具有挑战性,因为数据是非独立同分布的,且缺乏外部监督、没有先验知识。为了解决这些挑战,该文提出一种进化网络模型(英文名EvolveNet),它是一种无先验知识的自适应自监督持续学习方法,能够纯粹地从数据连续体中提取和记忆表示。EvolveNet围绕3个主要组件设计:对抗伪监督学习损失、自监督遗忘损失和在线记忆更新,以进行均匀子集选择。这3个组件的设计旨在协同工作,以最大化学习性能。该文在5个公开数据集上对EvolveNet进行了全面实验。结果显示,在所有设置中,EvolveNet优于现有算法,在CIFAR-10, CIFAR-100和TinyImageNet数据集上的准确率显著提高,同时在针对增量学习的多模态数据集Core-50和iLab-20M上也表现最佳。该文还进行了跨数据集的泛化实验,结果显示EvolveNet在泛化方面更加稳健。最后,在Github上开源了EvolveNet模型和核心代码,促进了无监督持续学习的进展,并为研究社区提供了有用的工具和平台。
  • 图  1  对比学习+伪监督的对抗自监督学习架构

    图  2  在所有数据集的最终Acc和KNN准确率

    图  3  EvolveNet模型在不同数据集上的准确率与遗忘率曲线

    图  4  在不同$ \lambda $和$ u $下进行的CIFAR-10数据流上的超参数实验

    表  1  不同对比和遗忘损失组合下顺序数据流的平均最终KNN准确率

    对比损失遗忘损失CIFAR-10TinyImageNetCore-50iLab-20M
    SimCLR[17]×18.8418.1369.3385.02
    SupCon[15]×23.8315.6770.4184.98
    Co2L[30]30.6330.8073.2486.57
    EvolveNet×32.5531.9675.8188.93
    EvolveNet35.0633.5179.0592.70
    下载: 导出CSV

    表  2  不同损失函数组合下顺序数据流的iLab-20M的平均KNN准确率(%)

    损失函数组合 平均最终KNN准确率
    ${{L}} $rp 85.2
    ${{L}} $bc 82.6
    ${{L}} $rp + Lbc 89.5
    ${{L}} $rp + U 87.3
    ${{L}} $rp + C 88.1
    ${{L}} $rp + U + C 91.2
    ${{L}} $rp + ${{L}} $bc + U 90.4
    ${{L}} $rp + ${{L}} $bc + C 91.0
    ${{L}} $rp + ${{L}} $bc + U + C 92.7
    下载: 导出CSV

    表  3  在Core-50和iLab-20M上的跨数据集泛化。

    训练数据集⇒ iLab-20M Core-50
    测试数据集⇒ Core-50 iLab-20M
    模型 Acc(↑) $\Delta $(%)(↓) Acc(↑) $\Delta $(%)(↓)
    SimCLR[17] 53.5 17 49.3 26
    EvolveNet 71.6 8 79.9 15
    下载: 导出CSV

    表  4  EvolveNet模型在CIFAR-10,Core-50和iLab-20M数据集上与带类标签的持续学习算法的性能比较

    模型 CIFAR-10 Core-50 iLab-20M
    Acc(↑) For(↓) Acc(↑) For(↓) Acc(↑) For(↓)
    SimCLR[17] 18.8 11.2 69.3 22.3 85.0 10.8
    LUMP[22] 24.0 8.9 70.7 17.6 88.9 6.2
    DER[14] 20.2 10.1 69.4 21.5 87.3 8.9
    Co2L[30] 30.6 10.7 73.2 18.9 86.6 9.6
    PNN[2] 12.5 38.6 59.8 29.0 71.4 23.3
    EvolveNet 35.1 4.8 79.1 6.7 92.7 5.1
    下载: 导出CSV
  • [1] MEHTA S V, PATIL D, CHANDAR S, et al. An empirical investigation of the role of pre-training in lifelong learning[J]. The Journal of Machine Learning Research, 2023, 24(1): 214.
    [2] BAKER M M, NEW A, AGUILAR-SIMON M, et al. A domain-agnostic approach for characterization of lifelong learning systems[J]. Neural Networks, 2023, 160: 274–296. doi: 10.1016/j.neunet.2023.01.007.
    [3] PURUSHWALKAM S, MORGADO P, and GUPTA A. The challenges of continuous self-supervised learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 702–721. doi: 10.1007/978-3-031-19809-0_40.
    [4] GRAUMAN K, WESTBURY A, BYRNE E, et al. Ego4D: Around the world in 3, 000 hours of egocentric video[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 18995–19012. doi: 10.1109/CVPR52688.2022.01842.
    [5] DE LANGE M and TUYTELAARS T. Continual prototype evolution: Learning online from non-stationary data streams[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8250–8259. doi: 10.1109/ICCV48922.2021.00814.
    [6] VERWIMP E, YANG Kuo, PARISOT S, et al. Re-examining distillation for continual object detection[J]. arXiv: 2204.01407, 2022.
    [7] SUN Yu, WANG Xiaolong, LIU Zhuang, et al. Test-time training with self-supervision for generalization under distribution shifts[C]. The 37th International Conference on Machine Learning, 2020: 9229–9248.
    [8] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [9] WANG Xin, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[J]. arXiv: 2003.06957, 2020.
    [10] WU Jiaxi, LIU Songtao, HUANG Di, et al. Multi-scale positive sample refinement for few-shot object detection[C]. The 16th European Conference, Glasgow, UK, 2020: 456–472. doi: 10.1007/978-3-030-58517-4_27.
    [11] BRAHMA D and RAI P. A probabilistic framework for lifelong test-time adaptation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 3582–3591. doi: 10.1109/CVPR52729.2023.00349.
    [12] YAN Xiaopeng, CHEN Ziliang, XU Anni, et al. Meta R-CNN: Towards general solver for instance-level low-shot learning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9577–9586. doi: 10.1109/ICCV.2019.00967.
    [13] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 5351–5359. doi: 10.1109/CVPR.2009.5206848.
    [14] MENEZES A G, DE MOURA G, ALVES C, et al. Continual object detection: A review of definitions, strategies, and challenges[J]. Neural Networks, 2023, 161: 476–493. doi: 10.1016/j.neunet.2023.01.041.
    [15] LOMONACO V, PELLEGRINI L, RODRIGUEZ P, et al. CVPR 2020 continual learning in computer vision competition: Approaches, results, current challenges and future directions[J]. Artificial Intelligence, 2022, 303: 103635. doi: 10.1016/j.artint.2021.103635.
    [16] GRAFFIETI G, BORGHI G, and MALTONI D. Continual learning in real-life applications[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 6195–6202. doi: 10.1109/LRA.2022.3167736.
    [17] BAE H, BROPHY E, CHAN R H M, et al. IROS 2019 lifelong robotic vision: Object recognition challenge [competitions][J]. IEEE Robotics & Automation Magazine, 2020, 27(2): 11–16. doi: 10.1109/MRA.2020.2987186.
    [18] VERWIMP E, YANG Kuo, PARISOT S, et al. CLAD: A realistic continual learning benchmark for autonomous driving[J]. Neural Networks, 2023, 161: 659–669. doi: 10.1016/j.neunet.2023.02.001.
    [19] SARFRAZ F, ARANI E, and ZONOOZ B. Sparse coding in a dual memory system for lifelong learning[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 9714–9722. doi: 10.1609/aaai.v37i8.26161.
    [20] MISHRA R and SURI M. A survey and perspective on neuromorphic continual learning systems[J]. Frontiers in Neuroscience, 2023, 17: 1149410. doi: 10.3389/fnins.2023.1149410.
    [21] WANG Yuxiong, RAMANAN D, and HEBERT M. Meta-learning to detect rare objects[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9925–9934. doi: 10.1109/ICCV.2019.01002.
    [22] ZHU Chenchen, CHEN Fangyi, AHMED U, et al. Semantic relation reasoning for shot-stable few-shot object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8782–8791. doi: 10.1109/CVPR46437.2021.00867.
    [23] YPSILANTIS N A, GARCIA N, HAN Guangxing, et al. The met dataset: Instance-level recognition for artworks[C]. The 1st Neural Information Processing Systems Track on Datasets and Benchmarks, 2021.
    [24] QIAO Limeng, ZHAO Yuxuan, LI Zhiyuan, et al. DeFRCN: Decoupled faster R-CNN for few-shot object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8681–8690. doi: 10.1109/ICCV48922.2021.00856.
    [25] CHU Zhixuan, LI Ruopeng, RATHBUN S, et al. Continual causal inference with incremental observational data[C]. 2023 IEEE 39th International Conference on Data Engineering, Anaheim, USA, 2023: 3430–3439. doi: 10.1109/ICDE55515.2023.00263.
    [26] DAMEN D, DOUGHTY H, FARINELLA G M, et al. The EPIC-KITCHENS dataset: Collection, challenges and baselines[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4125–4141. doi: 10.1109/TPAMI.2020.2991965.
    [27] 杨静, 何瑶, 李斌, 等. 基于门控机制与重放策略的持续语义分割方法[J]. 电子与信息学报, 2022. doi: 10.11999/JEIT230803.

    YANG Jing, HE Yao, LI Bin, et al. A continual semantic segmentation method based on gating mechanism and replay strategy[J]. Journal of Electronics & Information Technology, 2022. doi: 10.11999/JEIT230803.
    [28] JEONG J, LEE S, KIM J, et al. Consistency-based semi-supervised learning for object detection[C]. The 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 965.
    [29] 张立民, 谭凯文, 闫文君, 等. 基于持续学习和联合特征提取的特定辐射源识别[J]. 电子与信息学报, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.

    ZHANG Limin, TAN Kaiwen, YAN Wenjun, et al. Specific emitter identification based on continuous learning and joint feature extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308–316. doi: 10.11999/JEIT211176.
    [30] OSTAPENKO O. Continual learning via local module composition[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 30298–30312.
    [31] XU Mengde, ZHANG Zheng, HU Han, et al. End-to-end semi-supervised object detection with soft teacher[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3060–3069. doi: 10.1109/ICCV48922.2021.00305.
    [32] SHE Qi, FENG Fan, HAO Xinyue, et al. OpenLORIS-Object: A robotic vision dataset and benchmark for lifelong deep learning[C]. 2020 IEEE International Conference on Robotics and Automation, Paris, France, 2020: 4767–4773. doi: 10.1109/ICRA40945.2020.9196887.
    [33] KANG Bingyi, LIU Zhuang, WANG Xin, et al. Few-shot object detection via feature reweighting[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8420–8429. doi: 10.1109/ICCV.2019.00851.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  221
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-05-14
  • 网络出版日期:  2024-05-22
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回