高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小样本SAR目标的双重一致性因果识别方法

王陈炜 罗思懿 黄钰林 裴季方 张寅 杨建宇

王陈炜, 罗思懿, 黄钰林, 裴季方, 张寅, 杨建宇. 小样本SAR目标的双重一致性因果识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT240140
引用本文: 王陈炜, 罗思懿, 黄钰林, 裴季方, 张寅, 杨建宇. 小样本SAR目标的双重一致性因果识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT240140
WANG Chenwei, LUO Siyi, HUANG Yulin, PEI Jifang, ZHANG Yin, YANG Jianyu. A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240140
Citation: WANG Chenwei, LUO Siyi, HUANG Yulin, PEI Jifang, ZHANG Yin, YANG Jianyu. A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240140

小样本SAR目标的双重一致性因果识别方法

doi: 10.11999/JEIT240140
基金项目: 四川省自然科学基金 (2023NSFSC1970)
详细信息
    作者简介:

    王陈炜:男,博士,研究方向为雷达目标识别、机器学习、雷达探测成像等

    罗思懿:女,硕士,研究方向为雷达目标识别、机器学习、雷达探测成像等

    黄钰林:男,教授,研究方向为雷达探测成像、雷达目标检测与识别、人工智能与机器学习等

    裴季方:男,副研究员,研究方向为雷达目标识别、机器学习、雷达探测成像等

    张寅:男,研究员,研究方向为新体制雷达、雷达信号处理、雷达成像等

    杨建宇:男,教授,研究方向为雷达探测与成像、信号检测与估计等

    通讯作者:

    黄钰林 yulinhuang@uestc.edu.cn

  • 中图分类号: TN958

A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency

  • 摘要: 在小样本条件下提升方法的泛化性能,是合成孔径雷达自动目标识别(SAR ATR)重要的研究方向。针对该方向中的基础理论问题,该文建立了一个SAR ATR因果模型,证明了SAR图像中背景、相干斑等干扰在充足样本条件下可以被忽略;但在小样本条件下,这些因素将成为识别中的混杂因子,会在提取的SAR图像特征中引入虚假相关性,影响SAR ATR识别性能。为了甄别和消除这些特征中的虚假效应,该文提出一个基于双重一致性的小样本SAR ATR方法,其中双重一致性包括类内一致性掩码和效应一致性损失。首先,基于鉴别特征应具有类内一致和类间差异的原则,利用类内一致性掩码,捕获目标的类内一致鉴别特征,反减出目标特征中的混淆部分,准确估计出干扰引入的虚假效应。其次,基于不变风险最小化的思想,利用效应一致性损失,将经验风险最小化数据量需求转变为对效应相似度的度量需求,降低虚假效应消除对数据量的需求,消除特征中的虚假效应。因而,所提基于双重一致性的小样本SAR ATR方法可实现特征提取中的真实因果,实现准确的识别性能。两个基准数据集上的识别实验,验证了该方法的合理性和有效性,可提升小样本条件下SAR目标识别的性能。
  • 图  1  有限SAR样本在ATR中引入的因果效应变化

    图  2  本文方法的总体框架

    表  1  MSTAR数据集下的训练集与测试集

    类别 训练集 测试集
    数量 俯仰角 数量 俯仰角
    BMP2-9563 233 17° 195 15°
    BRDM2-E71 298 274
    BTR60-7532 256 195
    BTR70-c71 233 196
    D7-92 299 274
    2S1-b01 299 274
    T62-A51 299 273
    T72-132 232 196
    ZIL131-E12 299 274
    ZSU234-d08 299 274
    下载: 导出CSV

    表  2  MSTAR数据集不同训练样本数量下10类目标的识别性能(%)

    类别每类目标训练样本数
    510202530406080100
    BMP273.3383.5992.3194.8795.9097.9598.9797.4498.46
    BRDM277.7494.8993.8096.7297.0898.1899.2799.6498.91
    BTR6083.5986.6791.7994.3694.8795.9098.9796.9297.44
    BTR7070.9290.8292.3595.9296.9498.4797.9698.9898.98
    D768.9883.5892.7095.2695.9997.4598.5499.6499.64
    2S181.7580.2993.8095.9997.0898.5498.9199.6498.91
    T6274.3690.1192.6795.6097.0798.5397.4499.6399.63
    T7289.8086.2291.8495.4196.9498.4798.9898.9898.98
    ZIL13168.2585.7793.0796.7297.8198.5498.9199.6499.64
    ZSU23474.4580.2993.8096.7297.0898.1898.5499.6499.64
    平均值76.1386.3893.0096.0797.0198.2498.7999.3299.35
    下载: 导出CSV

    表  3  OpenSARShip数据集中训练与测试集

    类别成像条件训练样本数测试样本数总样本数
    Bulk CarrierVH 和 VV, C 波段
    分辨率=5~20 m
    入射角=20°-45°
    仰角=±11°
    Rg20 m×az22 m
    200475675
    Container Ship2008111011
    Tanker200354554
    下载: 导出CSV

    表  4  OpenSARShip数据集不同训练样本数量下3类舰船目标的识别性能(%)

    类别每类训练样本数
    1020303040607080100200
    Bulk Carrier65.8963.5865.6875.1660.2166.1168.2165.2672.8473.47
    Container Ship71.2775.4675.9676.5782.4979.0480.0285.2083.3590.75
    Tanker79.1082.7781.9274.0184.4686.1684.4681.9278.8182.77
    平均值71.5173.7574.4175.6676.5876.9277.6678.8679.4184.12
    下载: 导出CSV

    表  5  :消融实验:20个训练样本下不同消融配置的识别性能(%)

    方法
    配置
    特征效应BMP2BRDM2BTR60BTR70D72S1T62T72ZIL131ZSU234平均值
    V1××80.5175.9174.8780.1073.7276.2878.7582.1484.3186.8679.59
    V2×88.2189.0581.5488.2785.7796.3581.6884.1887.2394.1688.16
    V392.3193.8091.7992.3592.7093.8092.6791.8493.0793.8093.00
    下载: 导出CSV
  • [1] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991. (查阅网上资料, 未找到本条文献页码信息, 请确认) .
    [2] KREUCHER C. SAR-ATR using EO-based deep networks[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–5. doi: 10.1109/RadarConf2351548.2023.10149584.
    [3] MAO Deqing, YANG Jianyu, ZHANG Yongchao, et al. Angular superresolution of real aperture radar with high-dimensional data: Normalized projection array model and adaptive reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117216. doi: 10.1109/TGRS.2022.3203131.
    [4] MAO Deqing, YANG Jianyu, TUO Xingyu, et al. Angular superresolution of real aperture radar for target scale measurement using a generalized hybrid regularization approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5109314. doi: 10.1109/TGRS.2023.3315310.
    [5] CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi: 10.1109/TGRS.2022.3165849.
    [6] HUANG Zhongling, YAO Xiwen, LIU Ying, et al. Physically explainable CNN for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 25–37. doi: 10.1016/j.isprsjprs.2022.05.008.
    [7] WANG Chenwei, LUO Siyi, PEI Jifang, et al. Crucial feature capture and discrimination for limited training data SAR ATR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 291–305. doi: 10.1016/j.isprsjprs.2023.09.014.
    [8] FENG Sijia, JI Kefeng, WANG Fulai, et al. PAN: Part attention network integrating electromagnetic characteristics for interpretable SAR vehicle target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204617. doi: 10.1109/TGRS.2023.3256399.
    [9] WANG Chenwei, LUO Siyi, HUANG Yulin, et al. SAR ATR method with limited training data via an embedded feature augmenter and dynamic hierarchical-feature refiner[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5216215. doi: 10.1109/TGRS.2023.3314501.
    [10] PEARL J. Causal inference in statistics: An overview[J]. Statistics Surveys, 2009, 3: 96–146. doi: 10.1214/09-SS057.
    [11] SCHÖLKOPF B, JANZING D, PETERS J, et al. On causal and anticausal learning[C]. Proceedings of the 29th International Conference on Machine Learning, Edinburgh, UK, 2012.
    [12] GREENLAND S, PEARL J, and ROBINS J M. Causal diagrams for epidemiologic research[J]. Epidemiology, 1999, 10(1): 37–48. doi: 10.1097/00001648-199901000-00008.
    [13] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759.
    [14] LI Yibing, LI Xiang, SUN Qian, et al. SAR image classification using CNN embeddings and metric learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4002305. doi: 10.1109/LGRS.2020.3022435.
    [15] ZHENG Ce, JIANG Xue, and LIU Xingzhao. Semi-supervised SAR ATR via multi-discriminator generative adversarial network[J]. IEEE Sensors Journal, 2019, 19(17): 7525–7533. doi: 10.1109/JSEN.2019.2915379.
    [16] MORGAN D A E. Deep convolutional neural networks for ATR from SAR imagery[C]. Proceedings of SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore, USA, 2015: 94750F. doi: 10.1117/12.2176558.
    [17] WANG Quan, XU Haixia, YUAN Liming, et al. Dense capsule network for SAR automatic target recognition with limited data[J]. Remote Sensing Letters, 2022, 13(6): 533–543. doi: 10.1080/2150704X.2022.2044089.
    [18] LANG Ping, FU Xiongjun, FENG Cheng, et al. LW-CMDANet: A novel attention network for SAR automatic target recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6615–6630. doi: 10.1109/JSTARS.2022.3195074.
    [19] FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic scattering feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-08-28
  • 网络出版日期:  2024-09-01

目录

    /

    返回文章
    返回