高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小样本SAR目标的双重一致性因果识别方法

王陈炜 罗思懿 黄钰林 裴季方 张寅 杨建宇

王陈炜, 罗思懿, 黄钰林, 裴季方, 张寅, 杨建宇. 小样本SAR目标的双重一致性因果识别方法[J]. 电子与信息学报, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140
引用本文: 王陈炜, 罗思懿, 黄钰林, 裴季方, 张寅, 杨建宇. 小样本SAR目标的双重一致性因果识别方法[J]. 电子与信息学报, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140
WANG Chenwei, LUO Siyi, HUANG Yulin, PEI Jifang, ZHANG Yin, YANG Jianyu. A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140
Citation: WANG Chenwei, LUO Siyi, HUANG Yulin, PEI Jifang, ZHANG Yin, YANG Jianyu. A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3928-3935. doi: 10.11999/JEIT240140

小样本SAR目标的双重一致性因果识别方法

doi: 10.11999/JEIT240140
基金项目: 四川省自然科学基金 (2023NSFSC1970)
详细信息
    作者简介:

    王陈炜:男,博士,研究方向为雷达目标识别、机器学习、雷达探测成像等

    罗思懿:女,硕士,研究方向为雷达目标识别、机器学习、雷达探测成像等

    黄钰林:男,教授,研究方向为雷达探测成像、雷达目标检测与识别、人工智能与机器学习等

    裴季方:男,副研究员,研究方向为雷达目标识别、机器学习、雷达探测成像等

    张寅:男,研究员,研究方向为新体制雷达、雷达信号处理、雷达成像等

    杨建宇:男,教授,研究方向为雷达探测与成像、信号检测与估计等

    通讯作者:

    黄钰林 yulinhuang@uestc.edu.cn

  • 中图分类号: TN958

A Causal Interventional SAR ATR Method with Limited Data via Dual Consistency

Funds: The Natural Science Foundation of Sichuan Province (2023NSFSC1970)
  • 摘要: 在小样本条件下提升方法的泛化性能,是合成孔径雷达自动目标识别(SAR ATR)的重要研究方向。针对该方向中的基础理论问题,该文建立了一个SAR ATR因果模型,证明了SAR图像中背景、相干斑等干扰在充足样本条件下可以被忽略;但在小样本条件下,这些因素将成为识别中的混杂因子,在提取的SAR图像特征中引入虚假相关性,影响SAR ATR性能。为了甄别和消除这些特征中的虚假效应,该文提出一个基于双重一致性的小样本SAR ATR方法,其中双重一致性包括类内一致性掩码和效应一致性损失。首先,基于鉴别特征应具有类内一致和类间差异的原则,利用类内一致性掩码,捕获目标的类内一致鉴别特征,甄别出目标特征中的混淆部分,准确估计出干扰引入的虚假效应。其次,基于不变风险最小化的思想,利用效应一致性损失,将经验风险最小化数据量需求转变为对效应相似度的度量需求,降低虚假效应消除对数据量的需求,消除特征中的虚假效应。因而,所提基于双重一致性的小样本SAR ATR方法可实现特征提取中的真实因果,实现准确的识别性能。两个基准数据集上的识别实验,验证了该方法的合理性和有效性,可提升小样本条件下SAR目标识别的性能。
  • 图  1  有限SAR样本在ATR中引入的因果效应变化

    图  2  本文方法的总体框架

    表  1  MSTAR数据集下的训练集与测试集

    类别 训练集 测试集
    数量 俯仰角 数量 俯仰角
    BMP2-9563 233 17° 195 15°
    BRDM2-E71 298 274
    BTR60-7532 256 195
    BTR70-c71 233 196
    D7-92 299 274
    2S1-b01 299 274
    T62-A51 299 273
    T72-132 232 196
    ZIL131-E12 299 274
    ZSU234-d08 299 274
    下载: 导出CSV

    表  2  MSTAR数据集不同训练样本数量下10类目标的识别性能(%)

    类别每类目标训练样本数
    510202530406080100
    BMP273.3383.5992.3194.8795.9097.9598.9797.4498.46
    BRDM277.7494.8993.8096.7297.0898.1899.2799.6498.91
    BTR6083.5986.6791.7994.3694.8795.9098.9796.9297.44
    BTR7070.9290.8292.3595.9296.9498.4797.9698.9898.98
    D768.9883.5892.7095.2695.9997.4598.5499.6499.64
    2S181.7580.2993.8095.9997.0898.5498.9199.6498.91
    T6274.3690.1192.6795.6097.0798.5397.4499.6399.63
    T7289.8086.2291.8495.4196.9498.4798.9898.9898.98
    ZIL13168.2585.7793.0796.7297.8198.5498.9199.6499.64
    ZSU23474.4580.2993.8096.7297.0898.1898.5499.6499.64
    平均值76.1386.3893.0096.0797.0198.2498.7999.3299.35
    下载: 导出CSV

    表  3  OpenSARShip数据集中训练与测试集

    类别 成像条件 训练样本数 测试样本数 总样本数
    Bulk Carrier VH 和 VV, C 波段
    分辨率=5~20 m
    入射角=20°~45°
    仰角=±11°
    Rg20 m×az22 m
    200 475 675
    Container Ship 200 811 1011
    Tanker 200 354 554
    下载: 导出CSV

    表  4  OpenSARShip数据集不同训练样本数量下3类舰船目标的识别性能(%)

    类别 每类训练样本数
    10 20 30 40 50 60 70 80 100 200
    Bulk Carrier 65.89 63.58 65.68 75.16 60.21 66.11 68.21 65.26 72.84 73.47
    Container Ship 71.27 75.46 75.96 76.57 82.49 79.04 80.02 85.20 83.35 90.75
    Tanker 79.10 82.77 81.92 74.01 84.46 86.16 84.46 81.92 78.81 82.77
    平均值 71.51 73.75 74.41 75.66 76.58 76.92 77.66 78.86 79.41 84.12
    下载: 导出CSV

    表  5  消融实验:20个训练样本下不同消融配置的识别性能(%)

    方法
    配置
    特征效应BMP2BRDM2BTR60BTR70D72S1T62T72ZIL131ZSU234平均值
    V1××80.5175.9174.8780.1073.7276.2878.7582.1484.3186.8679.59
    V2×88.2189.0581.5488.2785.7796.3581.6884.1887.2394.1688.16
    V392.3193.8091.7992.3592.7093.8092.6791.8493.0793.8093.00
    下载: 导出CSV

    表  6  MSTAR数据集下SAR目标识别性能对比(%)

    方法 每类样本数
    10 20 40 55 80 110 165 220 All data
    传统方法 PCA+SVM [14] 76.43 87.95 92.48 94.32
    ADaboost [14] 75.68 86.45 91.45 93.51
    DGM [14] 81.11 88.14 92.85 96.07
    数据增强 GAN-CNN [14] 81.80 88.35 93.88 97.03
    MGAN-CNN [14] 85.23 90.82 94.91 97.81
    新颖模型 Deep CNN [15] 77.86 86.98 93.04 95.54
    Simple CNN [16] 75.88
    Dens-CapsNet [17] 80.26 92.95 96.50 99.75
    ASC-MACN [18] 62.85 79.46 99.42
    本文方法 86.38 93.00 98.24 99.32
    下载: 导出CSV
  • [1] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991.
    [2] KREUCHER C. SAR-ATR using EO-based deep networks[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–5. doi: 10.1109/RadarConf2351548.2023.10149584.
    [3] MAO Deqing, YANG Jianyu, ZHANG Yongchao, et al. Angular superresolution of real aperture radar with high-dimensional data: Normalized projection array model and adaptive reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117216. doi: 10.1109/TGRS.2022.3203131.
    [4] MAO Deqing, YANG Jianyu, TUO Xingyu, et al. Angular superresolution of real aperture radar for target scale measurement using a generalized hybrid regularization approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5109314. doi: 10.1109/TGRS.2023.3315310.
    [5] CHOI J H, LEE M J, JEONG N H, et al. Fusion of target and shadow regions for improved SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226217. doi: 10.1109/TGRS.2022.3165849.
    [6] HUANG Zhongling, YAO Xiwen, LIU Ying, et al. Physically explainable CNN for SAR image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 25–37. doi: 10.1016/j.isprsjprs.2022.05.008.
    [7] WANG Chenwei, LUO Siyi, PEI Jifang, et al. Crucial feature capture and discrimination for limited training data SAR ATR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 204: 291–305. doi: 10.1016/j.isprsjprs.2023.09.014.
    [8] FENG Sijia, JI Kefeng, WANG Fulai, et al. PAN: Part attention network integrating electromagnetic characteristics for interpretable SAR vehicle target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5204617. doi: 10.1109/TGRS.2023.3256399.
    [9] WANG Chenwei, LUO Siyi, HUANG Yulin, et al. SAR ATR method with limited training data via an embedded feature augmenter and dynamic hierarchical-feature refiner[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5216215. doi: 10.1109/TGRS.2023.3314501.
    [10] PEARL J. Causal inference in statistics: An overview[J]. Statistics Surveys, 2009, 3: 96–146. doi: 10.1214/09-SS057.
    [11] SCHÖLKOPF B, JANZING D, PETERS J, et al. On causal and anticausal learning[C]. Proceedings of the 29th International Conference on Machine Learning, Edinburgh, UK, 2012.
    [12] GREENLAND S, PEARL J, and ROBINS J M. Causal diagrams for epidemiologic research[J]. Epidemiology, 1999, 10(1): 37–48. doi: 10.1097/00001648-199901000-00008.
    [13] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with hog feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759.
    [14] ZHENG Ce, JIANG Xue, and LIU Xingzhao. Semi-supervised SAR ATR via multi-discriminator generative adversarial network[J]. IEEE Sensors Journal, 2019, 19(17): 7525–7533. doi: 10.1109/JSEN.2019.2915379.
    [15] MORGAN D A E. Deep convolutional neural networks for ATR from SAR imagery[C]. SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore, USA, 2015: 94750F. doi: 10.1117/12.2176558.
    [16] LI Yibing, LI Xiang, SUN Qian, et al. SAR image classification using CNN embeddings and metric learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4002305. doi: 10.1109/LGRS.2020.3022435.
    [17] WANG Quan, XU Haixia, YUAN Liming, et al. Dense capsule network for SAR automatic target recognition with limited data[J]. Remote Sensing Letters, 2022, 13(6): 533–543. doi: 10.1080/2150704X.2022.2044089.
    [18] FENG Sijia, JI Kefeng, WANG Fulai, et al. Electromagnetic Scattering Feature (ESF) module embedded network based on ASC model for robust and interpretable SAR ATR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235415. doi: 10.1109/TGRS.2022.3208333.
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  56
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-06
  • 修回日期:  2024-08-28
  • 网络出版日期:  2024-09-01
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回