高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合多曝光融合和图像去模糊的深度网络

张梅 赵康威 朱金辉

张梅, 赵康威, 朱金辉. 联合多曝光融合和图像去模糊的深度网络[J]. 电子与信息学报, 2024, 46(11): 4219-4228. doi: 10.11999/JEIT240113
引用本文: 张梅, 赵康威, 朱金辉. 联合多曝光融合和图像去模糊的深度网络[J]. 电子与信息学报, 2024, 46(11): 4219-4228. doi: 10.11999/JEIT240113
ZHANG Mei, ZHAO Kangwei, ZHU Jinhui. Deep Network for Joint Multi-exposure Fusion and Image Deblur[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4219-4228. doi: 10.11999/JEIT240113
Citation: ZHANG Mei, ZHAO Kangwei, ZHU Jinhui. Deep Network for Joint Multi-exposure Fusion and Image Deblur[J]. Journal of Electronics & Information Technology, 2024, 46(11): 4219-4228. doi: 10.11999/JEIT240113

联合多曝光融合和图像去模糊的深度网络

doi: 10.11999/JEIT240113
基金项目: 国家自然科学基金(62071184)
详细信息
    作者简介:

    张梅:女,副教授,研究方向为优化与调度、智能算法与仿真、图形处理

    赵康威:男,硕士生,研究方向为图像融合、深度学习

    朱金辉:男,副教授,研究方向为计算机应用技术

    通讯作者:

    朱金辉 csjhzhu@scut.edu.cn

  • 中图分类号: TN911.73; TP391

Deep Network for Joint Multi-exposure Fusion and Image Deblur

Funds: The National Natural Science Foundation of China (62071184)
  • 摘要: 多曝光图像融合可提高图像的动态范围,从而获取高质量的图像。对于在像自动驾驶等快速运动场景中获得的模糊的长曝光图像,利用通用的图像融合方法将其直接与低曝光图像融合得到的图像质量并不高。目前暂缺乏对带有运动模糊的长曝光和短曝光图像的端到端融合方法。基于此,该文提出一种联合多曝光融合和图像去模糊的深度网络(DF-Net)端到端地解决带有运动模糊的长短曝光图像融合问题。该方法提出一种结合小波变换的残差模块用于构建编码器和解码器,其中设计单个编码器对短曝光图像进行特征提取,构建基于编码器和解码器的多级结构对带有模糊的长曝光图像进行特征提取,设计残差均值激励融合模块进行长短曝光特征的融合,最后通过解码器重建图像。由于缺少基准数据集,创建了基于数据集 SICE 的带有运动模糊的多曝光融合数据集,用于模型的训练与测试。最后,从定性和定量的角度将所设计的模型和方法和其他先进的图像去模糊和多曝光融合的分步优化方法进行了实验对比,验证了该文的模型和方法对带有运动模糊的多曝光图像融合的优越性。并在移动车辆上采集到的多曝光数据组上进行验证,结果显示了所提方法解决实际问题的有效性。
  • 图  1  DF-Net网络架构图

    图  2  编码器和解码器结构图

    图  3  小波残差模块结构图

    图  4  残差激励均值融合模块结构图

    图  5  快速运动下长短曝光图像及其频域图

    图  6  清晰图像及其频谱图及添加运动模糊的图像及其频谱图

    图  7  带有模糊的多曝光图像融合数据组

    图  8  测试集示例图

    图  9  在带有模糊的多曝光数据集的“塔”图像上,DF-Net与“Deblur+MEF”策略下方法的图像比较

    图  10  在带有模糊的多曝光数据集的“森林”图像上,DF-Net与“MEF+Deblur”策略下方法的图像比较

    图  11  真实拍摄的带有模糊多曝光数据集及融合结果图

    图  12  模块消融实验的图像比较

    表  1  DF-Net与Deblur+MEF策略下最优方法在PSNR和SSIM上的比较

    方法组合 DPE-MEF [15] IFCNN [16] MEFNet[17] U2fusion[18]
    PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
    DMPHN [12] 18.012 0 0.822 6 19.470 0 0.813 5 16.630 0 0.746 0 18.075 9 0.700 9
    MIMO-UNet [13] 18.138 9 0.835 7 19.803 2 0.835 5 17.026 8 0.774 8 18.269 2 0.716 1
    DeepRFT [14] 19.052 9 0.912 8 20.517 4 0.906 0 18.154 6 0.870 8 18.760 7 0.752 9
    DF-Net PSNR = 21.712 6 SSIM = 0.924 6
    下载: 导出CSV

    表  2  DF-Net与MEF+Deblur策略下最优方法在PSNR和SSIM上的比较

    方法组合 DPE-MEF [15] IFCNN[16] MEFNet[17] U2fusion[18]
    PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
    DMPHN [12] 18.273 4 0.799 8 19.701 4 0.856 4 18.415 5 0.778 1 17.449 2 0.605 0
    MIMO-UNet [13] 20.089 6 0.873 1 20.187 9 0.876 1 18.601 4 0.797 1 19.563 0 0.815 0
    DeepRFT[14] 19.913 3 0.871 6 19.704 0 0.885 9 18.779 3 0.819 1 19.918 2 0.809 6
    DF-Net PSNR = 21.712 6 SSIM = 0.924 6
    下载: 导出CSV

    表  3  DF-Net在256p下与其他方法在FLOPs和Params上的比较

    方法组合DPE-MEF[15]IFCNN[16]MEFNet[17]U2fusion[18]
    FLOPsParamsFLOPsParamsFLOPsParamsFLOPsParams
    DMPHN[12]106.6119.8684.326.9777.696.92118.147.52
    MIMO-UNet[13]180.9528.33158.6615.44152.0315.39192.4815.99
    DeepRFT[14]34.8213.1312.530.245.900.1946.350.79
    DF-NetFLOPs = 2.01Params = 0.28
    下载: 导出CSV

    表  4  模块消融实验比较

    小波残差模块 RMEFB PSNR SSIM
    实验1 × × 21.216 1 0.912 4
    实验2 × 21.352 1 0.917 2
    实验3 × 21.602 4 0.919 6
    DF-Net 21.712 6 0.924 6
    下载: 导出CSV
  • [1] LI Shutao and KANG Xudong. Fast multi-exposure image fusion with median filter and recursive filter[J]. IEEE Transactions on Consumer Electronics, 2012, 58(2): 626–632. doi: 10.1109/TCE.2012.6227469.
    [2] MERTENS T, KAUTZ J, and VAN REETH F. Exposure fusion[C]. The 15th Pacific Conference on Computer Graphics and Applications, Maui, USA, 2007: 382–390. doi: 10.1109/PG.2007.17.
    [3] ZHANG Hao and MA Jiayi. IID-MEF: A multi-exposure fusion network based on intrinsic image decomposition[J]. Information Fusion, 2023, 95: 326–340. doi: 10.1016/j.inffus.2023.02.031.
    [4] LI Jiawei, LIU Jinyuan, ZHOU Shihua, et al. Learning a coordinated network for detail-refinement multiexposure image fusion[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(2): 713–727. doi: 10.1109/TCSVT.2022.3202692.
    [5] KIM T H, AHN B, and LEE K M. Dynamic scene deblurring[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 3160–3167. doi: 10.1109/ICCV.2013.392.
    [6] 杨爱萍, 李磊磊, 张兵, 等. 基于轻量化渐进式残差网络的图像快速去模糊[J]. 电子与信息学报, 2022, 44(5): 1674–1682. doi: 10.11999/JEIT210298.

    YANG Aiping, LI Leilei, ZHANG Bing, et al. Fast image deblurring based on the lightweight progressive residual network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1674–1682. doi: 10.11999/JEIT210298.
    [7] TSAI F J, PENG Y T, LIN Y Y, et al. Stripformer: Strip transformer for fast image deblurring[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 146–162. doi: 10.1007/978-3-031-19800-7_9.
    [8] CHEN Liangyu, CHU Xiaojie, ZHANG Xiangyu, et al. Simple baselines for image restoration[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 17–33. doi: 10.1007/978-3-031-20071-7_2.
    [9] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14821–14831. doi: 10.1109/CVPR46437.2021.01458.
    [10] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [11] SODANO M, MAGISTRI F, GUADAGNINO T, et al. Robust double-encoder network for RGB-D panoptic segmentation[C]. 2023 IEEE International Conference on Robotics and Automation, London, UK, 2023: 4953–4959. doi: 10.1109/ICRA48891.2023.10160315.
    [12] ZHANG Hongguang, DAI Yuchao, LI Hongdong, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5978–5986. doi: 10.1109/CVPR.2019.00613.
    [13] CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4641–4650. doi: 10.1109/ICCV48922.2021.00460.
    [14] MAO Xintian, LIU Yiming, LIU Fengze, et al. Intriguing findings of frequency selection for image deblurring[C]. Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 1905–1913. doi: 10.1609/aaai.v37i2.25281.
    [15] HAN Dong, LI Liang, GUO Xiaojie, et al. Multi-exposure image fusion via deep perceptual enhancement[J]. Information Fusion, 2022, 79: 248–262. doi: 10.1016/j.inffus.2021.10.006.
    [16] ZHANG Yu, LIU Yu, SUN Peng, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99–118. doi: 10.1016/j.inffus.2019.07.011.
    [17] MA Kede, DUANMU Zhengfang, ZHU Hanwei, et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 2808–2819. doi: 10.1109/TIP.2019.2952716.
    [18] XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/TPAMI.2020.3012548.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  55
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-10-08
  • 网络出版日期:  2024-10-12
  • 刊出日期:  2024-11-10

目录

    /

    返回文章
    返回