高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种面向宇航应用的高可靠性抗辐射加固技术静态随机存储器单元

闫爱斌 李坤 黄正峰 倪天明 徐辉

闫爱斌, 李坤, 黄正峰, 倪天明, 徐辉. 两种面向宇航应用的高可靠性抗辐射加固技术静态随机存储器单元[J]. 电子与信息学报, 2024, 46(10): 4072-4080. doi: 10.11999/JEIT240082
引用本文: 闫爱斌, 李坤, 黄正峰, 倪天明, 徐辉. 两种面向宇航应用的高可靠性抗辐射加固技术静态随机存储器单元[J]. 电子与信息学报, 2024, 46(10): 4072-4080. doi: 10.11999/JEIT240082
YAN Aibin, LI Kun, HUANG Zhengfeng, NI Tianming, XU Hui. Two Highly Reliable Radiation Hardened By Design Static Random Access Memory Cells for Aerospace Applications[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4072-4080. doi: 10.11999/JEIT240082
Citation: YAN Aibin, LI Kun, HUANG Zhengfeng, NI Tianming, XU Hui. Two Highly Reliable Radiation Hardened By Design Static Random Access Memory Cells for Aerospace Applications[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4072-4080. doi: 10.11999/JEIT240082

两种面向宇航应用的高可靠性抗辐射加固技术静态随机存储器单元

doi: 10.11999/JEIT240082
基金项目: 国家自然科学基金(61974001)
详细信息
    作者简介:

    闫爱斌:男,博士,教授,研究方向为数字电路可靠性技术等

    李坤:男,硕士生,研究方向为SRAM单元容错技术

    黄正峰:男,博士,教授,研究方向为数字集成电路容错设计等

    倪天明:男,博士,教授,研究方向为数字集成电路可测性设计等

    徐辉:男,博士,教授,研究方向为可信计算与人工智能等

    通讯作者:

    徐辉 austxuhui@163.com

  • 中图分类号: TN43

Two Highly Reliable Radiation Hardened By Design Static Random Access Memory Cells for Aerospace Applications

Funds: The National Natural Science Foundation of China (61974001)
  • 摘要: CMOS尺寸的大幅缩小引发电路可靠性问题。该文介绍了两种高可靠的基于设计的抗辐射加固(RHBD)10T和12T抗辐射加固技术(SRAM)单元,它们可以防护单节点翻转(SNU)和双节点翻转(DNU)。10T单元主要由两个交叉耦合的输入分离反相器组成,该单元可以通过其内部节点之间的反馈机制稳定地保持存储的值。由于仅使用少量晶体管,因此其在面积和功耗方面开销也较低。基于10T单元,提出了使用4个并行存取访问管的12T单元。与10T单元相比,12T单元的读/写访问时间更短,且具有相同的容错能力。仿真结果表明,所提单元可以从任意SNU和部分DNU中恢复。此外,与先进的加固SRAM单元相比,所提RHBD 12T单元平均可以节省16.8%的写访问时间、56.4%的读访问时间和10.2%的功耗,而平均牺牲了5.32%的硅面积。
  • 图  1  所提RHBD10T单元电路图

    图  2  所提RHBD10T单元版图

    图  3  所提RHBD10T单元正常操作的仿真结果

    图  4  所提 RHBD10T单元的SNU自恢复仿真结果

    图  5  所提 RHBD10T 单元的 DNU 的仿真结果

    图  6  所提RHBD12T单元电路图

    图  7  所提 RHBD12T单元的版图

    图  8  温度与电压变化对 SRAM 设计的 RAT,WAT 和功耗影响的仿真结果

    图  9  阙值电压和沟道长度变化对SRAM设计的RAT, WAT和功耗的影响的仿真结果

    图  10  电压0.8 V下的SNM比较

    表  1  未加固/加固 SRAM 单元之间的可靠性和开销比较结果

    SRAM 6T NASA 13T RHD 12T QCCM 12T QUCCE 12T DNU SRM We-Quatro Yan 14T QCCM 10T RHSC 12T SAR 14T RHBD 10T RHBD 12T
    文献 [18] [19] [20] [21] [22] [23] [25] [20] [26] [27] 本文 本文
    SNUR × × × × × × ×
    #DHP 0 0 2 1 0 16 2 0 1 0 0 4 4
    RAT (ps) 26.55 128.67 25.72 12.99 13.02 6.63 12.99 51.2 18.20 36.89 32.92 25.88 11.21
    WAT (ps) 4.11 18.2 5.06 4.22 4.31 4.71 4.38 4.09 23.21 3.83 4.84 7.11 4.21
    功耗(nW) 5.24 18.92 10.38 10.43 10.43 20.86 10.43 7.78 11.45 8.93 10.6 9.02 9.32
    10–3×面积(nm2) 4.35 9.07 8.27 8.71 8.71 17.42 8.71 10.25 7.79 8.71 12.44 7.30 8.71
    下载: 导出CSV
  • [1] YAN Aibin, FAN Zhengzheng, DING Liang, et al. Cost-effective and highly reliable circuit-components design for safety-critical applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 517–529. doi: 10.1109/TAES.2021.3103586.
    [2] VACCA E, AZIMI S, DE SIO C, et al. Soft error reliability prediction of SRAM-based FPGA designs[C]. 2022 22nd European Conference on Radiation and Its Effects on Components and Systems (RADECS), Venice, Italy, 2022: 1–4. doi: 10.1109/RADECS55911.2022.10412546.
    [3] WANG Shida, TANG Min, ZHANG Hongwei, et al. Evaluation of single-event upset in FinFET device[C]. 2023 5th International Conference on Radiation Effects of Electronic Devices (ICREED), Kunming, China, 2023: 1–7. doi: 10.1109/ICREED59404.2023.10390726.
    [4] LIANG Huaguo, XU Xiumin, HUANG Zhengfeng, et al. A methodology for characterization of SET propagation in SRAM-based FPGAs[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2985–2992. doi: 10.1109/TNS.2016.2620165.
    [5] BLACK J D, DODD P E, and WARREN K M. Physics of multiple-node charge collection and impacts on single-event characterization and soft error rate prediction[J]. IEEE Transactions on Nuclear Science, 2013, 60(3): 1836–1851. doi: 10.1109/TNS.2013.2260357.
    [6] YAN Aibin, XU Zhelong, FENG Xiangfeng, et al. Novel quadruple-node-upset-tolerant latch designs with optimized overhead for reliable computing in harsh radiation environments[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(1): 404–413. doi: 10.1109/TETC.2020.3025584.
    [7] HATEFINASAB S, MEDINA-GARCIA A, MORALES D P, et al. Rule-based design for low-cost double-node upset tolerant self-recoverable D-Latch[J]. IEEE Access, 2023, 11: 1732–1741. doi: 10.1109/ACCESS.2022.3233812.
    [8] ZEINZINGER M, LANGER J, EIBENSTEINER F, et al. Comparative analysis of SRAM PUF temperature susceptibility on embedded systems[C]. 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 2023: 1–8. doi: 10.1109/ICECET58911.2023.10389242.
    [9] SUGITANI S, NAKAJIMA R, YOSHIDA K, et al. Radiation hardened flip-flops with low area, delay and power overheads in a 65 nm bulk process[C]. 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, USA, 2023: 1–5. doi: 10.1109/IRPS48203.2023.10117957.
    [10] YAN Aibin, LING Yafei, CUI Jie, et al. Quadruple cross-coupled dual-interlocked-storage-cells-based multiple-node-upset-tolerant latch designs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(3): 879–890. doi: 10.1109/TCSI.2019.2959007.
    [11] TIAN Yuanxin, ZHANG Yuejun, ZHANG Huihong, et al. An architecture of a single-event tolerant D flip-flop using full-custom design in 28nm process[C]. 2023 IEEE 15th International Conference on ASIC (ASICON), Nanjing, China, 2023: 1–4. doi: 10.1109/ASICON58565.2023.10396468.
    [12] LAI Xiaoling, GUO Yangming, ZHANG Jian, et al. A novel circuit and layout design of SEU tolerant SRAM in a 65nm CMOS process[C]. 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), Ningbo, China, 2023: 522–526. doi: 10.1109/ICIEA58696.2023.10241793.
    [13] JUNG I S, KIM Y B, and LOMBARDI F. A novel sort error hardened 10T SRAM cells for low voltage operation[C]. IEEE 55th International Midwest Symposium on Circuits and Systems, Boise, USA, 2012: 714–717. doi: 10.1109/MWSCAS.2012.6292120.
    [14] LIN Sheng, KIM Y B, and LOMBARDI F. Analysis and design of nanoscale CMOS storage elements for single-event hardening with multiple-node upset[J]. IEEE Transactions on Device and Materials Reliability, 2012, 12(1): 68–77. doi: 10.1109/TDMR.2011.2167233.
    [15] RAJAEI R, ASGARI B, TABANDEH M, et al. Single event multiple upset-tolerant SRAM cell designs for nano-scale CMOS technology[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25(2): 1035–1047. doi: 10.3906/elk-1502-124.
    [16] GUO Jing, ZHU Lei, SUN Yu, et al. Design of area-efficient and highly reliable RHBD 10T memory cell for aerospace applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(5): 991–994. doi: 10.1109/TVLSI.2017.2788439.
    [17] RAJAEI R, ASGARI B, TABANDEH M, et al. Design of robust SRAM cells against single-event multiple effects for nanometer technologies[J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(3): 429–436. doi: 10.1109/TDMR.2015.2456832.
    [18] SHIYANOVSKII Y, RAJENDRAN A, and PAPACHRISTOU C. A low power memory cell design for SEU protection against radiation effects[C]. IEEE NASA/ESA Conference on Adaptive Hardware and Systems, Erlangen, Germany, 2012: 288–295. doi: 10.1109/AHS.2012.6268665.
    [19] QI Chunhua, XIAO Liyi, WANG Tianqi, et al. A highly reliable memory cell design combined with layout-level approach to tolerant single-event upsets[J]. IEEE Transactions on Device and Materials Reliability, 2016, 16(3): 388–395. doi: 10.1109/TDMR.2016.2593590.
    [20] YAN Aibin, ZHOU Jun, HU Yuanjie, et al. Novel quadruple cross-coupled memory cell designs with protection against single event upsets and double-node upsets[J]. IEEE Access, 2019, 7: 176188–176196. doi: 10.1109/access.2019.2958109.
    [21] JIANG Jianwei, XU Yiran, ZHU Wenyi, et al. Quadruple cross-coupled latch-based 10T and 12T SRAM bit-cell designs for highly reliable terrestrial applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(3): 967–977. doi: 10.1109/TCSI.2018.2872507.
    [22] YAN Aibin, WU Zhen, GUO Jing, et al. Novel double-node-upset-tolerant memory cell designs through radiation-hardening-by-design and layout[J]. IEEE Transactions on Reliability, 2019, 68(1): 354–363. doi: 10.1109/TR.2018.2876243.
    [23] DANG L D T, KIM J S, and CHANG I J. We-Quatro: Radiation-hardened SRAM cell with parametric process variation tolerance[J]. IEEE Transactions on Nuclear Science, 2017, 64(9): 2489–2496. doi: 10.1109/TNS.2017.2728180.
    [24] YAN Aibin, CHEN Yan, HU Yuanjie, et al. Novel speed-and-power-optimized SRAM cell designs with enhanced self-recoverability from single- and double-node upsets[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4684–4695. doi: 10.1109/TCSI.2020.3018328.
    [25] CHOUDHARY V and YADAV D S. Analysis of power, delay and SNM of 6T & 8T SRAM cells[C]. 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2021: 78–82. doi: 10.1109/ICECA52323.2021.9676022.
    [26] PRASAD G, MANDI B C, and ALI M. Design and analysis of 10T-boosted radiation hardened SRAM cell for aerospace applications[C]. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, 2019: 304–307. doi: 10.1109/iSES47678.2019.00075.
    [27] PAL S, MOHAPATRA S, KI W H, et al. Soft-error-aware read-decoupled SRAM WITH MULTI-NODE RECOVERY FOR AEROSPACE APPLICATions[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(10): 3336–3340. doi: 10.1109/TCSII.2021.3073947.
    [28] 董攀, 范隆, 岳素格, 等. 一种高温单粒子效应测试系统的设计与实现[J]. 微电子学与计算机, 2011, 28(12): 17–20,24. doi: 10.19304/j.cnki.issn1000-7180.2011.12.005.

    DONG Pan, FAN Long, YUE Suge, et al. A high temperature single event effects test system design and implementation[J]. Microelectronics & Computer, 2011, 28(12): 17–20,24. doi: 10.19304/j.cnki.issn1000-7180.2011.12.005.
    [29] 刘冰燕, 蔡江铮, 黑勇. 应用于超低电压下的SRAM存储单元设计[J]. 微电子学与计算机, 2016, 33(9): 15–18,23. doi: 10.19304/j.cnki.issn1000-7180.2016.09.004.

    LIU Bingyan, CAI Jiangzheng, and HEI Yong. A SRAM bitcell design for ultra-low supply application[J]. Microelectronics & Computer, 2016, 33(9): 15–18,23. doi: 10.19304/j.cnki.issn1000-7180.2016.09.004.
    [30] PANDA S, KUMAR N M, and SARKAR C K. Power, delay and noise optimization of a SRAM cell using a different threshold voltages and high performance output noise reduction circuit[C]. 2009 4th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, 2009: 1–4.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  55
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-04
  • 修回日期:  2024-09-11
  • 网络出版日期:  2024-09-16
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回