Polarized Beam Online Reconfiguration Technique For Flexible Deformation Antennas
-
摘要: 针对柔性极化阵列天线因其结构实时形变而难以波束重构以及性能受损的问题,该文提出一种基于柔性形变天线的极化波束在线重构技术。首先,基于无人机机翼模型的柔性形变状态进行阵列建模,借助于模态法得到实时形变数据,在线重构天线阵列模型;其次,基于矢量阵列天线的阵元响应,构建3维空间中的柔性阵列信号模型;最后,将循环算法(CA)与2阶锥规划(SOCP)进行深度结合设计以求解最优极化波束重构的动态优化问题。仿真结果表明:在一定的形变范围内,即在环境载荷对不同弧度与角度需求下,该文所提方法能够实现在线天线阵列重构,并根据所测量应变位移数据而实现最优极化波束在线重构,方向图增益、波束宽度以及极化匹配设计均能满足工程应用要求。Abstract: In response to the challenges posed by the deformation of flexible polarized array antennas, which results in difficulties in beam reconstruction and compromised beam performance, polarization beam online reconstruction technique based on flexible deformation polarized antennas is proposed in this paper. Firstly, the deformation state of the array is modeled based on a wing model, and real-time deformation data is obtained using modal analysis to reconstruct the antenna array model online. Secondly, the element response of vector array antenna is utilized to construct a flexible array antenna signal model in three-dimensional space. Finally, a deep integration of the Cyclic Algorithm (CA) and Second-Order Cone Programming (SOCP) is employed to solve the dynamic optimization problem of this optimal polarization beam reconstruction. Simulation results demonstrate that within a certain range of deformation and under different arc and angle requirements from environmental loads, the proposed method can achieve online antenna array reconstruction and real-time optimal polarization beam reconstruction based on the dynamic antenna array model. The directional gain, beamwidth, and polarization matching design all meet the requirements for practical engineering applications.
-
1 极化波束在线重构算法的实现步骤
输入:阵列模型变形时间,天线载荷,目标天线阵列模型,目标
波束方向,目标主瓣极化参数循环开始:$ i $从$ 0 $~$ n $开始循环 步骤1 初始化,产生变形前柔性阵列天线模型。 步骤2 在$ {t_i} $时刻,柔性阵列天线阵列模型发生自主变形,通过
模态法计算应变—位移矩阵,得到实际阵列模型。步骤3 SOCP求解,通过原始-对偶内点法,根据实时阵列模
型,得到最优极化状态以及波束矩阵。循环结束 表 1 不同算法求解最优极化波束形成指标分析
算法 r0 θ–3 dB (°) $\varphi_{-3\;{\mathrm{dB}}} $ (°) G α β t(s) IPF (45.83°,91.67°) 12.7 26.8 19.7 7.32 17.34 335.62 IP-PDIPM (45.83°,91.67°) 11.2 24.2 20.7 10.01 20.01 4 619.92 S-PDIPM (45.83°,91.67°) 9.7 20.8 22.0 7.51 17.85 26.81 表 2 理想阵列与重构阵列的波束效果对比
阵列 p θ–3 dB (°) $\varphi_{-3\;{\mathrm{dB}}} $ (°) G α β 理想阵列 –16.9 12.7 26.8 19.7 7.32 17.34 重构阵列 –17.1 9.7 20.8 22.0 7.511 17.85 表 3 不同时刻柔性阵列机身弧面弧度对应极化波束响应($ d(t) \in ({60^ \circ },{100^ \circ }) $)
参数 t (s) 10 20 30 40 50 d 60 70 80 90 100 p –16.3 –16.5 –16.8 –16.5 –16.5 ($\theta_{-3\;{\rm dB}} $,$\varphi_{-3\;{\mathrm{dB}}} $) (9.2°,25.3°) (9.2°,23.2°) (9.0°,23.6°) (8.5°,25.3°) (9.3°,20.7°) G 21.3 21.7 21.7 21.7 22.2 (α,β) (7.30,17.10) (7.28,17.01) (7.51,17.39) (7.65,17.47) (7.51,17.82) 表 4 不同时刻柔性阵列两翼斜面夹角对应极化波束响应($ k(t) \in \left( {0.1,1.0} \right) $)
参数 t (s) 10 20 30 40 50 k 0.2 0.4 0.6 0.8 1.0 p –15.8 –17.0 –14.6 –14.4 –14.2 ($\theta_{-3\;{\rm dB}} $, $\varphi_{-3\;{\rm dB}} $) (10.8°,19.4°) (13.2°,23.5°) (11.2°,20.8°) (10.5°,22.5°) (11.3°,19.7°) G 21.8 20.1 21.3 21.3 21.5 (α,β) (7.67,17.68) (6.91,17.81) (7.10,17.30) (7.13,17.43) (6.91,17.53) -
[1] ASADALLAH F, SHEHADEH G, COSTANTINE J, et al. A digitally tuned flexible reconfigurable antenna for IoT devices[C]. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, Canada, 2020: 1803–1804. doi: 10.1109/IEEECONF35879.2020.9329456. [2] 何小静. 弹载共形阵列设计与波束综合[D]. [硕士论文], 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.001137.HE Xiaojing. Design and beam synthesis of missile-borne conformal array[D]. [Master dissertation], Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.001137. [3] GAN T H, LIU Ankang, TAN P K, et al. A bendable wideband dual-polarization conformal phased-array antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(8): 1952–1956. doi: 10.1109/LAWP.2023.3270431. [4] 南荣昌, 周金柱, 唐宝富, 等. 机翼蒙皮天线的形变重构方法和实验[J]. 电子机械工程, 2020, 36(5): 1–6,54. doi: 10.19659/j.issn.1008-5300.2020.05.001.NAN Rongchang, ZHOU Jinzhu, TANG Baofu, et al. Deformation reconstruction method and experiment of wing skin antenna[J]. Electro-Mechanical Engineering, 2020, 36(5): 1–6,54. doi: 10.19659/j.issn.1008-5300.2020.05.001. [5] 闫敏. 极化相控阵雷达波束形成与极化合成技术研究[D]. [硕士论文], 哈尔滨工业大学, 2016.YAN Min. Research on beamforming and polarization synthesis for polarized phased array radar[D]. [Master dissertation], Harbin Institute of Technology, 2015. [6] XIAO Jinjun and NEHORAI A. Optimal polarized beampattern synthesis using a vector antenna array[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 576–587. doi: 10.1109/TSP.2008.2007107. [7] 陈志坤, 乔晓林, 李风从. 基于极化波束形成的相控阵雷达导引头抗干扰技术研究[J]. 航空兵器, 2016(6): 16–20. doi: 10.19297/j.cnki.41-1228/tj.2016.06.004.CHEN Zhikun, QIAO Xiaolin, and LI Fengcong. Research on anti-interference technology for phased array radar seeker based on polarized beam synthesis[J]. Aero Weaponry, 2016(6): 16–20. doi: 10.19297/j.cnki.41-1228/tj.2016.06.004. [8] XIE Peng, WANG Guangming, LI Haipeng, et al. A dual-polarized two-dimensional beam-steering Fabry–Pérot cavity antenna with a reconfigurable partially reflecting surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2370–2374. doi: 10.1109/LAWP.2017.2718567. [9] WANG Peipei, LIU Junmin, HE Yanliang, et al. Arbitrary cylindrical vector beam generation using cross-polarized modulation[J]. IEEE Photonics Technology Letters, 2019, 31(11): 873–876. doi: 10.1109/LPT.2019.2910989. [10] 苏月, 谢拥军, 张春刚, 等. 飞机V形尾翼共形垂直极化合成天线[J]. 电讯技术, 2021, 61(2): 230–235. doi: 10.3969/j.issn.1001-893x.2021.02.016.SU Yue, XIE Yongjun, ZHANG Chungang, et al. A vertically polarized synthetic antenna conforming to V-shaped tail of an aircraft[J]. Telecommunication Engineering, 2021, 61(2): 230–235. doi: 10.3969/j.issn.1001-893x.2021.02.016. [11] 陈志坤. MIMO雷达自适应波形设计与阵列优化研究[D]. [博士论文], 哈尔滨工业大学, 2016.CHEN Zhikun. Research on adaptive waveform design and array optimization for MIMO radar[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2016. [12] MOULDER W F, DAS R N, MACCABE A C, et al. Rigid-Flexible Antenna Array (RFAA) for lightweight deployable apertures[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–5. doi: 10.23919/EuCAP48036.2020.9135627. [13] TANG Hong, BULGER C J, ROVERE T, et al. A low-profile flexible dual-band antenna with quasi-isotropic radiation patterns for MIMO system on UAVs[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 49–53. doi: 10.1109/LAWP.2022.3201492. [14] 陈志坤, 杜康, 彭冬亮, 等. 极化智能天线的二维矢量波束形成方法研究[J]. 信号处理, 2020, 36(2): 275–282. doi: 10.16798/j.issn.1003-0530.2020.02.015.CHEN Zhikun, DU Kang, PENG Dongliang, et al. Research on method of 2-D vector beamforming for polarized smart antenna[J]. Journal of Signal Processing, 2020, 36(2): 275–282. doi: 10.16798/j.issn.1003-0530.2020.02.015. [15] NIA B A, DE FLAVIIS F, and SAADAT S. Ultra thin dual-polarized flexible patch antenna for the 5G communication[C]. 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, USA, 2022: 1012–1013. doi: 10.1109/AP-S/USNC-URSI47032.2022.9886890. [16] WANG Yuxin and QU Siwei. Dual-polarized conformal transparent antenna array with hemispherical beam coverage[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(10): 2452–2456. doi: 10.1109/LAWP.2023.3291013.