高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种双重积累自反馈优化的三维多目标检测前跟踪算法

薄钧天 张嘉毫 王国宏 于洪波 张翔宇 王万田 王衡峰

薄钧天, 张嘉毫, 王国宏, 于洪波, 张翔宇, 王万田, 王衡峰. 一种双重积累自反馈优化的三维多目标检测前跟踪算法[J]. 电子与信息学报, 2024, 46(9): 3629-3636. doi: 10.11999/JEIT240057
引用本文: 薄钧天, 张嘉毫, 王国宏, 于洪波, 张翔宇, 王万田, 王衡峰. 一种双重积累自反馈优化的三维多目标检测前跟踪算法[J]. 电子与信息学报, 2024, 46(9): 3629-3636. doi: 10.11999/JEIT240057
BO Juntian, ZHANG Jiahao, WANG Guohong, YU Hongbo, ZHANG Xiangyu, WANG Wantian, WANG Hengfeng. A 3D Multi Targets Track before Detect Algorithm with Self-feedback Optimization of Dual Accumulation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3629-3636. doi: 10.11999/JEIT240057
Citation: BO Juntian, ZHANG Jiahao, WANG Guohong, YU Hongbo, ZHANG Xiangyu, WANG Wantian, WANG Hengfeng. A 3D Multi Targets Track before Detect Algorithm with Self-feedback Optimization of Dual Accumulation[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3629-3636. doi: 10.11999/JEIT240057

一种双重积累自反馈优化的三维多目标检测前跟踪算法

doi: 10.11999/JEIT240057
基金项目: 国家杰出青年科学基金(52025072),中国科协青年人才托举工程项目(2021-JCJQ-QT-009),国家自然科学基金(62271498),山东省自然科学基金面上项目(ZR2020MF015, ZR2020QF010)
详细信息
    作者简介:

    薄钧天:男,博士生,研究方向为抗干扰技术,目标检测与跟踪等

    张嘉毫:男,副教授,研究方向为抗干扰技术,天线设计技术等

    王国宏:男,教授,研究方向为目标检测与跟踪、信息融合与雷达组网等

    于洪波:男,副教授,研究方向为信息融合技术、信号与信息处理等

    张翔宇:男,讲师,研究方向为信息融合技术、目标检测与跟踪等

    王万田:男,讲师,研究方向为雷达抗干扰技术、目标检测与识别等

    王衡峰:男,讲师,研究方向为阵列信号处理、雷达抗干扰技术等

    通讯作者:

    张嘉毫 jiahao.z@hotmail.com

  • 中图分类号: TN957

A 3D Multi Targets Track before Detect Algorithm with Self-feedback Optimization of Dual Accumulation

Funds: The National Fund for Distinguished Young Scholars (52025072), The Young Elite Scientists Sponsorship Program by CAST (2021-JCJQ-QT-009), The National Natural Science Foundation of China (62271498), Shandong Provincial Natural Science Foundation, China (ZR2020MF015, ZR2020QF010)
  • 摘要: 针对3维微弱多目标检测问题,该文提出一种双重积累自反馈优化的3级平行线坐标变换(PT)检测前跟踪(TBD)算法。通过将平行线坐标变换引入至TBD技术,依次在规格化的径向距离-时间、方位角-时间和俯仰角-时间平面对量测点进行投影变换和双重非相参积累,同时利用功率累积结果反馈优化二值积累,有效缓解强目标淹没弱目标和编队目标串扰问题。仿真结果表明,当整体信杂比达到10 dB时,所提算法的全局检测概率接近80%,证明了该算法的有效性。
  • 图  1  优化积累结果

    图  2  3级检测结果

    图  3  最终检测结果

    图  4  不同目标检测概率

    图  5  不同目标数目检测概率

    表  1  目标参数

    序号 初始位置(km) 初始速度(m/s) 加速度(m/s2) RCS(m2) 信杂比(dB)
    1 $ \left({15,25},{5}\right) $ $\left( {{{180, - 20,5}}} \right)$ $\left( {{{0,0,0}}} \right)$ ${{0}}{{.2}}$ ${{10}}{{.2}}$
    2 $ \left({13,18},{7}{.5}\right) $ $\left( {{{180, - 200, - 10}}} \right)$ $\left( {{{2,1}}{{.5,0}}} \right)$ ${{0}}{{.15}}$ ${{13}}{{.2}}$
    3 $ \left({25,17},{4}\right) $ $\left( {{{ - 30,200,12}}} \right)$ $\left( {{{ - 1,3,0}}} \right)$ ${{0}}{{.2}}$ ${{9}}{{.6}}$
    4 $ \left({18,19}{.5},{6}\right) $ $\left( {{{200,180,0}}} \right)$ $ \left( {{{0,0,0}}} \right) $ ${{0}}{{.1}}$ ${{8}}{{.5}}$
    5 $ \left({18,20},{6}\right) $ $\left( {{{200,180,0}}} \right)$ $\left( {{{0,0,0}}} \right)$ ${{0}}{{.1}}$ ${{8}}{{.0}}$
    6 $ \left({18,20}{.5},{6}\right) $ $\left( {{{200,180,0}}} \right)$ $\left( {{{0,0,0}}} \right)$ ${{0}}{{.1}}$ ${{7}}{{.7}}$
    下载: 导出CSV

    表  2  算法运行时间随杂波密度变化

    杂波密度 30 60 90 120 150
    时间(s) 11.0 16.4 26.4 37.3 46.9
    杂波密度 180 210 240 270 300
    时间(s) 53.8 59.6 68.7 75.2 80.2
    下载: 导出CSV
  • [1] YAN Bo, PAOLINI E, XU Luping, et al. A target detection and tracking method for multiple radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114721. doi: 10.1109/TGRS.2022.3183387.
    [2] FAN Yifei, TAO Mingliang, SU Jia, et al. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1824–1828. doi: 10.1109/LGRS.2019.2912329.
    [3] GAO Chang, TAO Ran, and KANG Xuejing. Weak target detection in the presence of sea clutter using radon-fractional Fourier transform canceller[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5818–5830. doi: 10.1109/JSTARS.2021.3078723.
    [4] ZHAI Weitong, WANG Xiangrong, CAO Xianbin, et al. Reinforcement learning based dual-functional massive MIMO systems for multi-target detection and communications[J]. IEEE Transactions on Signal Processing, 2023, 71: 741–755. doi: 10.1109/TSP.2023.3252885.
    [5] YANG Lijuan, GAO Huotao, LING Yun, et al. 3D joint estimation of position and velocity for a moving target in multistatic radar system by VHC-2WLS algorithm[J]. IEEE Communications Letters, 2020, 24(9): 1939–1943. doi: 10.1109/LCOMM.2020.2997829.
    [6] ENGELS F, HEIDENREICH P, WINTERMANTEL M, et al. Automotive radar signal processing: Research directions and practical challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 865–878. doi: 10.1109/JSTSP.2021.3063666.
    [7] FENG Cheng, FU Xiongjun, LANG Ping, et al. A radar anti-jamming strategy based on game theory with temporal constraints[J]. IEEE Access, 2022, 10: 97429–97438. doi: 10.1109/ACCESS.2022.3200761.
    [8] ABERGEL R, DENIS L, LADJAL S, et al. Subpixellic methods for sidelobes suppression and strong targets extraction in single look complex SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 759–776. doi: 10.1109/JSTARS.2018.2790987.
    [9] KIM M and KIM K T. Complex mutual information-based least-dependent component analysis for ISAR imaging of multiple targets in a formation flight[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5382–5392. doi: 10.1109/TAES.2022.3169736.
    [10] YANG Xiaoliang, WEN Gongjian, MA Conghui, et al. CFAR detection of moving range-spread target in white Gaussian noise using waveform contrast[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 282–286. doi: 10.1109/LGRS.2015.2511060.
    [11] KIM D Y, RISTIC B, GUAN R, et al. A bernoulli track-before-detect filter for interacting targets in maritime radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1981–1991. doi: 10.1109/TAES.2021.3054715.
    [12] ELHOSHY M, GEBALI F, and GULLIVER T A. Expanding window dynamic-programming-based track-before-detect with order statistics in Weibull distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2564–2575. doi: 10.1109/TAES.2019.2948451.
    [13] LI Xiang, WANG Yan, QI Bin, et al. Underwater acoustic localization of the long baseline based on track-before-detect[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1501105. doi: 10.1109/LGRS.2023.3257990.
    [14] MOYER L R, SPAK J, and LAMANNA P. A multi-dimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3062–3068. doi: 10.1109/TAES.2011.6034689.
    [15] ZENG Jiankui, HE Zishu, SELLATHURAI M, et al. Modified Hough transform for searching radar detection[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 683–686. doi: 10.1109/LGRS.2008.2002574.
    [16] DUBSKA M, HEROUT A, JURÁNEK R, et al. Fully automatic roadside camera calibration for traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1162–1171. doi: 10.1109/TITS.2014.2352854.
    [17] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. I. System concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410.
    [18] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. II. Detection statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 109–115. doi: 10.1109/7.250411.
    [19] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. III. Detection performance with binary integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 116–125. doi: 10.1109/7.250412.
    [20] YAN Bo, XU Na, ZHAO Wenbo, et al. A three-dimensional Hough transform-based track-before-detect technique for detecting extended targets in strong clutter backgrounds[J]. Sensors, 2019, 19(4): 881. doi: 10.3390/s19040881.
    [21] LI Lin, WANG Guohong, ZHANG Xiangyu, et al. Adaptive real-time recursive radial distance-time plane Hough transform track-before-detect algorithm for hypersonic target[J]. IET Radar, Sonar & Navigation, 2020, 14(1): 138–146. doi: 10.1049/iet-rsn.2019.0198.
    [22] BI Xin, DU Jinsong, ZHANG Qingshi, et al. Improved multi-target radar TBD algorithm[J]. Journal of Systems Engineering and Electronics, 2015, 26(6): 1229–1235. doi: 10.1109/JSEE.2015.00135.
    [23] 王国宏, 李岳峰, 于洪波, 等. 三维空间中高超声速目标修正三级Hough变换-检测前跟踪算法[J]. 电子与信息学报, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622.

    WANG Guohong, LI Yuefeng, YU Hongbo, et al. Modified triple-stage Hough transform track-before-detect algorithm in three-dimensional space for hypersonic target[J]. Journal of Electronics & Information Technology, 2018, 40(4): 890–897. doi: 10.11999/JEIT170622.
    [24] 薄钧天, 王国宏, 于洪波, 等. 基于平行线坐标变换的检测前跟踪算法[J]. 航空学报, 2022, 43(8): 564–577. doi: 10.7527/S1000-6893.2021.25644.

    BO Juntian, WANG Guohong, YU Hongbo, et al. Track before detect algorithm based on parallel-line-coordinate transformation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 564–577. doi: 10.7527/S1000-6893.2021.25644.
    [25] LASSERRE M, BIDON S, and LE CHEVALIER F. New Sparse-promoting prior for the estimation of a radar scene with weak and strong targets[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4634–4643. doi: 10.1109/TSP.2016.2563409.
    [26] 薄钧天, 于洪波, 张翔宇, 等. 基于峰值自寻的多目标检测前跟踪算法[J]. 系统工程与电子技术, 2023, 45(10): 3083–3090. doi: 10.12305/j.issn.1001-506X.2023.10.11.

    BO Juntian, YU Hongbo, ZHANG Xiangyu, et al. Multi-target track before detect algorithm based on peak self-seeking[J]. Systems Engineering and Electronics, 2023, 45(10): 3083–3090. doi: 10.12305/j.issn.1001-506X.2023.10.11.
    [27] KNORR J B. Weather radar equation correction for frequency agile and phased array radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1220–1227. doi: 10.1109/TAES.2007.4383614.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  70
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-04-17
  • 网络出版日期:  2024-05-18
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回