高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伪影间共性机理驱动的多域感知社交网络深度伪造视频检测

王艳 孙钦东 荣东柱 汪小雄

王艳, 孙钦东, 荣东柱, 汪小雄. 伪影间共性机理驱动的多域感知社交网络深度伪造视频检测[J]. 电子与信息学报, 2024, 46(9): 3713-3721. doi: 10.11999/JEIT240025
引用本文: 王艳, 孙钦东, 荣东柱, 汪小雄. 伪影间共性机理驱动的多域感知社交网络深度伪造视频检测[J]. 电子与信息学报, 2024, 46(9): 3713-3721. doi: 10.11999/JEIT240025
WANG Yan, SUN Qindong, RONG Dongzhu, WANG Xiaoxiong. Deepfake Video Detection on Social Networks Using Multi-domain Aware Driven by Common Mechanism Analysis Between Artifacts[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3713-3721. doi: 10.11999/JEIT240025
Citation: WANG Yan, SUN Qindong, RONG Dongzhu, WANG Xiaoxiong. Deepfake Video Detection on Social Networks Using Multi-domain Aware Driven by Common Mechanism Analysis Between Artifacts[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3713-3721. doi: 10.11999/JEIT240025

伪影间共性机理驱动的多域感知社交网络深度伪造视频检测

doi: 10.11999/JEIT240025
基金项目: 国家自然科学基金(62272378),陕西省重点研究开发项目(2022ZDLSF07-07),四川省自然科学基金(2023NSFSC0502)
详细信息
    作者简介:

    王艳:女,博士生,研究方向为多媒体取证、人工智能安全等

    孙钦东:男,教授,研究方向为社交网络用户行为分析、多媒体取证、人工智能安全、物联网系统安全、网络攻防技术等

    荣东柱:男,博士生,研究方向为多媒体取证、人工智能安全等

    汪小雄:男,硕士生,研究方向为多媒体取证、人工智能安全等

    通讯作者:

    孙钦东 qdongsun@xjtu.edu.cn

  • 中图分类号: TN911.73; TP309.2

Deepfake Video Detection on Social Networks Using Multi-domain Aware Driven by Common Mechanism Analysis Between Artifacts

Funds: The National Natural Science Foundation of China (62272378), Shaanxi Province Key Research and Development Program (2022ZDLSF07-07), The Natural Science Foundation of Sichuan Province (2023NSFSC0502)
  • 摘要: 深度伪造技术在社交网络上的滥用引发了人们对视觉内容真实性与可靠性的严重担忧。已有检测算法未充分考虑社交网络上深度伪造视频的退化现象,导致深度伪造检测性能受以压缩为主的伪影信息干扰与上下文相关信息缺失等挑战性问题的限制。压缩编码与深度伪造生成算法上采样操作会在视频上留下伪影,这些伪影可导致真实视频与深度伪造视频间的细粒度差异。该文通过分析压缩伪影与深度伪造伪影的共性机理,揭示了二者间的结构相似性,为深度伪造检测模型抗压缩鲁棒性的增强提供了可靠理论依据。首先,针对压缩噪声对深度伪造特征的干扰,基于压缩伪影与深度伪造伪影频域表示的结构相似性,设计了频域自适应陷波滤波器以消除特定频带上压缩伪影的干扰。其次,为削弱深度伪造检测模型对未知噪声的敏感,设计了基于残差学习的去噪分支。采用基于注意力机制的特征融合方法增强深度伪造判别特征,结合度量学习策略优化网络模型,实现了具有抗压缩鲁棒性的深度伪造检测。理论分析与实验结果表明,与基线方法相比,该文算法在压缩深度伪造视频上的检测性能具有明显提升,并可作为一种即插即用模型与现有检测方法结合以提高其抗压缩鲁棒性。
  • 图  1  Xception检测模型受社交网络退化因素影响的可视化分析

    图  2  伪影间共性机理驱动的多域感知社交网络深度伪造视频检测模型

    图  3  抗噪鲁棒性

    图  4  Grad-CAM可视化

    表  1  本文算法与基线算法在4个数据集C23上性能的比较(%)

    方法 DF F2F FS NT
    ACC AUC ACC AUC ACC AUC ACC AUC
    Xception[5] 97.90 99.45 95.54 99.46 95.81 99.02 88.92 95.59
    Capsule[21] 98.25 99.32 98.34 98.96 98.46 99.71 88.90 94.46
    RFM[22] 89.56 98.42 94.09 98.63 90.15 99.23 87.31 94.60
    F3-Net[14] 97.34 99.68 97.71 99.44 98.18 99.78 89.12 95.64
    本文 99.02 99.94 98.58 99.63 99.21 99.89 91.79 97.12
    下载: 导出CSV

    表  2  本文算法与基线算法在4个数据集C40上性能的比较(%)

    方法 DF F2F FS NT
    ACC AUC ACC AUC ACC AUC ACC AUC
    Xception[5] 90.11 96.46 79.81 89.53 86.00 93.89 51.30 54.04
    Capsule[21] 89.37 94.81 81.97 89.52 83.66 90.36 55.31 58.12
    RFM[22] 86.91 93.78 73.75 82.65 78.06 89.42 61.25 63.05
    F3-Net[14] 92.12 97.78 84.72 92.84 88.84 95.13 58.28 63.28
    本文 95.17 98.73 86.87 93.84 90.19 96.47 59.42 66.97
    下载: 导出CSV

    表  3  本文算法与基线算法在各数据集的C40上训练C23上测试的性能比较(%)

    方法 DF F2F FS NT
    ACC AUC ACC AUC ACC AUC ACC AUC
    Xception[5] 89.78 96.95 82.95 95.16 89.81 95.97 58.28 63.15
    Capsule[21] 87.56 95.17 88.37 93.84 89.78 95.00 55.87 60.91
    RFM[22] 89.56 95.76 77.15 86.00 82.71 91.39 65.18 69.53
    F3-Net[14] 92.81 98.71 89.56 97.04 89.96 97.56 62.09 70.72
    本文 95.65 99.31 90.42 95.71 93.01 98.01 66.89 71.61
    下载: 导出CSV

    表  4  本文算法与基线算法在各数据集的C23上训练C40上测试的性能比较(%)

    方法 DF F2F FS NT
    ACC AUC ACC AUC ACC AUC ACC AUC
    Xception[5] 76.54 94.87 55.23 84.30 79.42 86.00 50.21 51.29
    Capsule[21] 79.87 90.68 58.78 77.11 73.68 82.63 58.40 67.84
    RFM[22] 75.90 90.07 73.75 84.86 69.15 82.67 56.09 62.88
    F3-Net[14] 77.12 94.45 57.18 82.45 78.87 88.48 54.31 68.61
    本文 88.86 95.85 75.92 86.04 84.57 92.90 54.74 67.96
    下载: 导出CSV

    表  5  算法的通用性(%)

    方法DFF2FFSNT
    ACCAUCACCAUCACCAUCACCAUC
    Capsule[21]94.1997.4383.8490.2290.5095.9358.2263.23
    RFM[22]90.6696.9079.3487.1888.0895.3654.3758.95
    F3-Net[14]94.6698.2085.3493.0890.4795.2160.4465.96
    下载: 导出CSV
  • [1] IGLESIAS G, TALAVERA E, and DÍAZ-ÁLVAREZ A. A survey on GANs for computer vision: Recent research, analysis and taxonomy[J]. Computer Science Review, 2023, 48: 100553. doi: 10.1016/j.cosrev.2023.100553.
    [2] ZANARDELLI M, GUERRINI F, LEONARDI R, et al. Image forgery detection: A survey of recent deep-learning approaches[J]. Multimedia Tools and Applications, 2023, 82(12): 17521–17566. doi: 10.1007/s11042-022-13797-w.
    [3] 牛淑芬, 戈鹏, 宋蜜, 等. 移动社交网络中基于属性加密的隐私保护方案[J]. 电子与信息学报, 2023, 45(3): 847–855. doi: 10.11999/JEIT221174.

    NIU Shufen, GE Peng, SONG Mi, et al. A privacy protection scheme based on attribute encryption in mobile social networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 847–855. doi: 10.11999/JEIT221174.
    [4] KINGRA S, AGGARWAL N, and KAUR N. Emergence of deepfakes and video tampering detection approaches: A survey[J]. Multimedia Tools and Applications, 2023, 82(7): 10165–10209. doi: 10.1007/s11042-022-13100-x.
    [5] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1800–1807. doi: 10.1109/CVPR.2017.195.
    [6] BINH L M and WOO S. ADD: Frequency attention and multi-view based knowledge distillation to detect low-quality compressed deepfake images[C]. The 36th AAAI Conference on Artificial Intelligence, 2022: 122–130. doi: 10.1609/aaai.v36i1.19886.
    [7] LEE S, AN J, and WOO S S. BZNet: Unsupervised multi-scale branch zooming network for detecting low-quality deepfake videos[C]. The ACM Web Conference 2022, Lyon, France, 2022: 3500–3510. doi: 10.1145/3485447.3512245.
    [8] LIN Liqun, ZHENG Yang, CHEN Weiling, et al. Saliency-aware spatio-temporal artifact detection for compressed video quality assessment[J]. IEEE Signal Processing Letters, 2023, 30: 693–697. doi: 10.1109/LSP.2023.3283541.
    [9] FRANK J, EISENHOFER T, SCHÖNHERR L, et al. Leveraging frequency analysis for deep fake image recognition[C]. The 37th International Conference on Machine Learning, 2020: 3247–3258.
    [10] LI Yuezun, CHANG M C, and LYU Siwei. In ictu oculi: Exposing AI created fake videos by detecting eye blinking[C]. 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 2018: 1–7. doi: 10.1109/WIFS.2018.8630787.
    [11] CIFTCI U A, DEMIR I, and YIN Lijun. Fakecatcher: Detection of synthetic portrait videos using biological signals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020: 1. doi: 10.1109/TPAMI.2020.3009287.
    [12] COZZOLINO D, THIES J, RÖSSLER A, et al. ForensicTransfer: Weakly-supervised domain adaptation for forgery detection[EB/OL]. https://arxiv.org/abs/1812.02510, 2018.
    [13] AFCHAR D, NOZICK V, YAMAGISHI J, et al. MesoNet: A compact facial video forgery detection network[C]. 2018 IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 2018: 1–7. doi: 10.1109/WIFS.2018.8630761.
    [14] QIAN Yuyang, YIN Guojun, SHENG Lu, et al. Thinking in frequency: Face forgery detection by mining frequency-aware clues[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 86–103. doi: 10.1007/978-3-030-58610-2_6.
    [15] LIU Honggu, LI Xiaodan, ZHOU Wenbo, et al. Spatial-phase shallow learning: Rethinking face forgery detection in frequency domain[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 772–781. doi: 10.1109/CVPR46437.2021.00083.
    [16] LI Ying, BIAN Shan, WANG Chuntao, et al. Exposing low-quality deepfake videos of social network service using spatial restored detection framework[J]. Expert Systems with Applications, 2023, 231: 120646. doi: 10.1016/j.eswa.2023.120646.
    [17] ZHANG Yun, ZHU Linwei, JIANG Gangyi, et al. A survey on perceptually optimized video coding[J]. ACM Computing Surveys, 2023, 55(12): 245. doi: 10.1145/3571727.
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [19] RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: Learning to detect manipulated facial images[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 2019: 1–11. doi: 10.1109/ICCV.2019.00009.
    [20] ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499–1503. doi: 10.1109/LSP.2016.2603342.
    [21] NGUYEN H H, YAMAGISHI J, and ECHIZEN I. Capsule-forensics: Using capsule networks to detect forged images and videos[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 2307–2311. doi: 10.1109/ICASSP.2019.8682602.
    [22] WANG Chengrui and DENG Weihong. Representative forgery mining for fake face detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 14918–14927. doi: 10.1109/CVPR46437.2021.01468.
    [23] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 618–626. doi: 10.1109/ICCV.2017.74.
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  108
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-06-13
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回