高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加载人工磁导体的双频柔性可穿戴天线

王丽黎 李君君 张诗雨 樊盼盼

王丽黎, 李君君, 张诗雨, 樊盼盼. 加载人工磁导体的双频柔性可穿戴天线[J]. 电子与信息学报, 2024, 46(9): 3637-3645. doi: 10.11999/JEIT231428
引用本文: 王丽黎, 李君君, 张诗雨, 樊盼盼. 加载人工磁导体的双频柔性可穿戴天线[J]. 电子与信息学报, 2024, 46(9): 3637-3645. doi: 10.11999/JEIT231428
WANG Lili, LI Junjun, ZHANG Shiyu, FAN Panpan. A Dual-band Flexible Wearable Antenna Loaded with an Artificial Magnetic Conductor[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3637-3645. doi: 10.11999/JEIT231428
Citation: WANG Lili, LI Junjun, ZHANG Shiyu, FAN Panpan. A Dual-band Flexible Wearable Antenna Loaded with an Artificial Magnetic Conductor[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3637-3645. doi: 10.11999/JEIT231428

加载人工磁导体的双频柔性可穿戴天线

doi: 10.11999/JEIT231428
详细信息
    作者简介:

    王丽黎:女,教授,研究方向为微波与天线系统、先进导航技术

    李君君:女,硕士生,研究方向为可穿戴天线

    张诗雨:女,硕士生,研究方向为阵列天线

    樊盼盼:女,硕士生,研究方向为目标检测与图像处理

    通讯作者:

    李君君 2440466243@qq.com

  • 中图分类号: TN827

A Dual-band Flexible Wearable Antenna Loaded with an Artificial Magnetic Conductor

  • 摘要: 该文研究了一种加载人工磁导体(AMC)的双频柔性可穿戴天线,天线的谐振频率为3.5 GHz和5.8 GHz。天线由双频单极子天线和4×4阵列的双频人工磁导体构成,均采用柔性材料作为介质基板。天线尺寸为0.70$ {\lambda _0} $×0.70$ {\lambda _0} $×0.05$ {\lambda _0} $($ {\lambda _0} $为3.5 GHz时的自由空间波长)。人工磁导体的介质基板为3层结构,增加了相位响应,使用双环开槽结构延长电流路径长度,实现了双频的宽带同相位反射。人工磁导体的引入有效降低天线的背向辐射,从而降低比吸收率(SAR),同时提高天线的增益。仿真结果表明,该天线性能受结构变形和人体载荷的影响较小。在工作频段内天线的阻抗带宽分别为7.5%和4.0%;峰值增益分别为7.86 dBi和8.06 dBi。在3.5 GHz和5.8 GHz的比吸收率分别为0.2 W/kg和0.06 W/kg,均小于美国联邦通信委员会标准。为了验证仿真结果,对天线进行加工测试,实测与仿真结果基本一致。实验结果表明,加载人工磁导体的天线具有良好的鲁棒性和增益以及较低的比吸收率,适用于可穿戴无线通信系统。
  • 图  1  单极子天线结构图

    图  2  单极子天线演变过程

    图  3  单极子天线表面电流分布图

    图  4  AMC单元结构图

    图  5  单元表面电流分布图

    图  6  AMC单元同相反射仿真图

    图  7  不同阵列S11仿真结果

    图  8  加载AMC的天线整体结构图

    图  9  不同参数对天线反射系数的影响

    图  10  天线实物图

    图  11  天线远场测试环境

    图  12  天线平放和弯曲S11结果

    图  13  天线加载AMC前后3.5 GHz方向图对比

    图  14  天线加载AMC前后5.8 GHz方向图对比

    图  15  天线3.5 GHz平放与弯曲方向图对比

    图  16  天线5.8GHz平放与弯曲方向图对比

    图  17  加载人体组织的天线模型

    图  18  天线与人体不同距离仿真结果

    图  19  天线在不同人体部位的实测结果

    图  20  SAR仿真结果

    表  1  单元结构参数(mm)

    pL1L2L3W1W2h1h2
    158.013.311.84.59.50.22.0
    下载: 导出CSV

    表  2  天线结构参数(mm)

    wp lp h1 lg rd1 rd2 rd3 rh1 rh2 rh3 rh4
    23.0 29.8 0.2 8.6 19.6 7.3 6.5 16.2 3.0 5.0 2.1
    rh5 dsd dsh wg wf p L1 L2 L3 W1 W2
    2.8 0.3 2.2 9.5 3.0 15.0 7.8 14.1 10.2 4.6 9.2
    下载: 导出CSV

    表  3  人体组织介电常数和厚度

    组织 3.5 GHz 5.8 GHz 厚度(mm)
    $ {\varepsilon _{\mathrm{r}}} $ σ(S/m) $ {\varepsilon _{\mathrm{r}}} $ σ(S/m)
    皮肤 37.01 2.02 35.11 3.71 1
    脂肪 5.17 0.16 4.95 0.29 5
    肌肉 51.44 2.56 48.48 4.96 20
    下载: 导出CSV

    表  4  本文设计与其他文献的对比

    文献 尺寸(mm×mm×mm) 频率(GHz) 带宽(%) SAR(W/kg) 峰值增益(dBi)
    [11] 55.79×52.25×4.5 2.45/3.65 15.7/2.3 0.651/0.369 4.25/7.35
    [12] 41×44×1.52 2.40/5.80 3.8/5.2 0.995/0.127 3.74/5.13
    [13] 58×54×0.4 2.45/5.80 2.8/3.1 0.300/0.400 3.00/5.30
    [14] 136×136×6 2.50/5.20 0.95/1.09 0.332/0.234 8.08/8.74
    本文 60×60×4.6 3.50/5.80 7.5/4.0 0.200/0.060 7.86/8.06
    下载: 导出CSV
  • [1] ALI U, ULLAH S, KAMAL B, et al. Design, analysis and applications of wearable antennas: A review[J]. IEEE Access, 2023, 11: 14458–14486. doi: 10.1109/ACCESS.2023.3243292.
    [2] HALL P and HAO Yang. Antennas and Propagation for Body-centric Wireless Communications[M]. 2nd ed. Norwood, USA: Artech House, 2012.
    [3] BARIYA M, NYEIN H Y Y, and JAVEY A. Wearable sweat sensors[J]. Nature Electronics, 2018, 1(3): 160–171. doi: 10.1038/s41928-018-0043-y.
    [4] 吉地辽日, 曹祥玉, 高军. 具有超宽带RCS减缩特性的天线设计[J]. 电子与信息学报, 2019, 41(1): 115–122. doi: 10.11999/JEIT180254.

    JIDI Liaori, CAO Xiangyu, and GAO Jun. Metasurface antenna design with ultra-wideband RCS reduction[J]. Journal of Electronics & Information Technology, 2019, 41(1): 115–122. doi: 10.11999/JEIT180254.
    [5] CHEN Yuwei, LIU Peiguo, LI Gaosheng, et al. A wideband circularly polarized antenna with an AMC reflector for navigation satellite systems[C]. 2017 IEEE 17th International Conference on Communication Technology, Chengdu, China, 2017: 705–708. doi: 10.1109/ICCT.2017.8359728.
    [6] LAI Jianjun, WANG Ji, SUN Wei, et al. A low profile artificial magnetic conductor based tri-band antenna for wearable applications[J]. Microwave and Optical Technology Letters, 2022, 64(1): 123–129. doi: 10.1002/mop.33040.
    [7] LIU Xiongying, DI Yunhui, LIU Hui, et al. A planar Windmill-like broadband antenna equipped with artificial magnetic conductor for off-body communications[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 64–67. doi: 10.1109/LAWP.2015.2429683.
    [8] MERSANI A, OSMAN L, and RIBERO J M. Performance of dual-band AMC antenna for wireless local area network applications[J]. IET Microwaves, Antennas & Propagation, 2018, 12(6): 872–878. doi: 10.1049/iet-map.2017.0476.
    [9] EL ATRASH M, ABDALLA M A, and ELHENNAWY H M. A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6378–6388. doi: 10.1109/TAP.2019.2923058.
    [10] SENEVIRATNE S, HU Yining, NGUYEN T, et al. A survey of wearable devices and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2573–2620. doi: 10.1109/COMST.2017.2731979.
    [11] ZHANG Kai, VANDENBOSCH G A E, and YAN Sen. A novel design approach for compact wearable antennas based on metasurfaces[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(4): 918–927. doi: 10.1109/TBCAS.2020.3010259.
    [12] MUSA U, SHAH S M, MAJID H A, et al. Design and analysis of a compact dual-band wearable antenna for WBAN applications[J]. IEEE Access, 2023, 11: 30996–31009. doi: 10.1109/ACCESS.2023.3262298.
    [13] SID A, CRESSON P Y, JOLY N, et al. A flexible and wearable dual band bio-based antenna for WBAN applications[J]. AEU-International Journal of Electronics and Communications, 2022, 157: 154412. doi: 10.1016/j.aeue.2022.154412.
    [14] AHMAD A, FAISAL F, ULLAH S, et al. Design and SAR analysis of a dual band wearable antenna for WLAN applications[J]. Applied Sciences, 2022, 12(18): 9218. doi: 10.3390/app12189218.
    [15] GAO Huan and WANG Shuqi. Branch-shaped flexible antenna integrated with AMC structure for WBAN applications[C]. 2021 13th International Symposium on Antennas, Propagation and EM Theory, Zhuhai, China, 2021: 1–3. doi: 10.1109/ISAPE54070.2021.9753000.
    [16] SONG Lingnan and RAHMAT-SAMII Y. A systematic investigation of rectangular patch antenna bending effects for wearable applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2219–2228. doi: 10.1109/TAP.2018.2809469.
    [17] KAUR H and CHAWLA P. Design and performance analysis of wearable antenna for ISM band applications[J]. International Journal of Electronics, 2023, 110(6): 986–1005. doi: 10.1080/00207217.2022.2068199.
    [18] YANG Hongcai, LIU Xiongying, FAN Yi, et al. Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4189–4199. doi: 10.1109/TAP.2021.3138504.
    [19] 冯杨, 熊艳晔, 潘少鹏, 等. 用于生物医疗的共面波导馈电双频植入式天线[J]. 微波学报, 2021, 37(2): 26–30, 36. doi: 10.14183/ j.cnki.1005-6122.202102005.

    FENG Yang, XIONG Yanye, PAN Shaopeng, et al. Coplanar waveguide-fed dual-frequency implantable antenna for biomedical applications[J]. Journal of Microwaves, 2021, 37(2): 26–30, 36. doi: 10.14183/j.cnki.1005-6122.202102005.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  45
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-07-18
  • 网络出版日期:  2024-08-03
  • 刊出日期:  2024-09-26

目录

    /

    返回文章
    返回