高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非视距环境下核密度估计的全球卫星导航系统鲁棒定位方法

贾琼琼 周月颖

贾琼琼, 周月颖. 非视距环境下核密度估计的全球卫星导航系统鲁棒定位方法[J]. 电子与信息学报, 2024, 46(8): 3246-3255. doi: 10.11999/JEIT231421
引用本文: 贾琼琼, 周月颖. 非视距环境下核密度估计的全球卫星导航系统鲁棒定位方法[J]. 电子与信息学报, 2024, 46(8): 3246-3255. doi: 10.11999/JEIT231421
JIA Qiongqiong, ZHOU Yueying. Robust Global Satellite Navigation System Positioning for Kernel Density Estimation in Non-Line-Of-Sight Environment[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3246-3255. doi: 10.11999/JEIT231421
Citation: JIA Qiongqiong, ZHOU Yueying. Robust Global Satellite Navigation System Positioning for Kernel Density Estimation in Non-Line-Of-Sight Environment[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3246-3255. doi: 10.11999/JEIT231421

非视距环境下核密度估计的全球卫星导航系统鲁棒定位方法

doi: 10.11999/JEIT231421 cstr: 32379.14.JEIT231421
基金项目: 国家自然科学基金(U2133204),中国民航大学民航航班广域监视与安全管控技术重点实验室开放基金(202202)
详细信息
    作者简介:

    贾琼琼:女,副教授,研究方向为卫星导航抗干扰技术、鲁棒的GNSS接收机技术、面向航空导航应用的可替代定位、导航和授时(APNT)技术

    周月颖:女,硕士生,研究方向为卫星导航鲁棒抗干扰、卫星导航鲁棒定位

    通讯作者:

    贾琼琼 qqjia@cauc.edu.cn

  • 中图分类号: TN967.1

Robust Global Satellite Navigation System Positioning for Kernel Density Estimation in Non-Line-Of-Sight Environment

Funds: The National Natural Science Foundation of China (U2133204), The Key Laboratory of Wide-Area Monitoring and Security Control Technology of Civil Aviation University of China Opened Foundation (202202)
  • 摘要: 非视距(NLOS)传输会引起全球卫星导航系统(GNSS)接收机的伪距测量误差,最终导致定位解出现较大误差,这一问题在城市峡谷等复杂环境下尤为突出。针对该问题,该文提出核密度估计的鲁棒定位方法,其核心思想是在定位解算中引入鲁棒估计来缓解NLOS的影响。考虑到NLOS引起的伪距观测误差偏离高斯分布,所提方法首先利用核密度估计(KDE)方法估计伪距观测误差的概率密度函数,并利用该概率密度函数来构造鲁棒代价函数用于导航解算,从而缓解NLOS引起的定位误差。实验结果表明所提方法在卫星存在NLOS传输时能够较好地减小GNSS的定位误差。
  • 图  1  NLOS传输示意图

    图  2  核密度估计的鲁棒定位流程图

    图  3  核密度估计的原理图

    图  4  卫星的几何分布

    图  5  PRN30存在NLOS时抑制前后的定位误差

    图  6  PRN15存在NLOS时抑制前后的定位误差

    图  7  两颗卫星存在NLOS时抑制前后的定位误差

    图  8  实验采集环境、可见卫星分布及采集设备

    图  9  不同方法定位后的定位误差

    图  10  最小二乘迭代的位移向量长度

    1  核密度估计的鲁棒定位方法

     步骤1 初始化设置,$l = 0$时利用传统LS得到接收机状态粗估
     值${{\boldsymbol{\hat x}}_0}$;
     步骤2 根据式(12)确定观测量误差:
     ${\boldsymbol{\hat \varepsilon }} = {\boldsymbol{b}} - {\boldsymbol{G}}{[\Delta \hat x,\Delta \hat y,\Delta \hat z,\Delta \delta {\hat t_u}]^{\text{T}}}$;
     步骤3 应用核密度函数估计计算观测量误差的概率密度函数
     $f(\hat {\boldsymbol{\varepsilon}} )$,并求其导函数$f'(\hat {\boldsymbol{\varepsilon}} )$;
     步骤4 用误差的概率密度函数及其导函数估计评分函数:
     $\varphi ({\boldsymbol{\hat \varepsilon }}) = - {{f'({\boldsymbol{\hat \varepsilon }})} \mathord{\left/ {\vphantom {{f'({\boldsymbol{\hat \varepsilon }})} {f({\boldsymbol{\hat \varepsilon }})}}} \right. } {f({\boldsymbol{\hat \varepsilon }})}}$;
     步骤5 利用鲁棒代价函数迭代更新状态增量的估计值:
     $\Delta {\boldsymbol{\hat x'}} = \Delta {\boldsymbol{\hat x}} + \mu {({{\boldsymbol{G}}^{\text{T}}}{\boldsymbol{G}})^{ - 1}}{{\boldsymbol{G}}^{\text{T}}}\hat \varphi ({\boldsymbol{\hat \varepsilon }})$
     步骤6 判断收敛性:若满足$\begin{array}{*{20}{c}} {\left\| {{{{\boldsymbol{\hat x}}}_l}} \right\| < \zeta ,}&{{\text{for}}} \end{array}\zeta \in {\boldsymbol{R}}$,则认
     为导航解收敛,输出定位结果;否则返回至步骤2继续进行定
     位解算。
    下载: 导出CSV

    表  1  信号仿真参数

    仿真信号参数参数值
    接收机中频(MHz)1.364
    接收机采样率(MHz)5.45
    定位周期(ms)1
    卫星PRN5,11,13,15,18,20,29,30
    卫星仰角(°)64,25,77,52,26,37,43,22
    载噪比(dB-Hz)44.5,40.5,45.8,43.4,40.8,41.7,42.3,40.2
    下载: 导出CSV

    表  2  低仰角卫星存在NLOS时抑制前后的定位误差(m)

    PRN30存在NLOS CN0&EI加权 鲁棒定位
    平均值 E 9.8 1.6 1.2
    N 13.5 3.1 2.7
    U 26.4 6.1 9.8
    均方根 E 9.9 2.1 1.1
    N 13.6 3.8 1.8
    U 26.6 7.6 3.5
    最大值 E 13.5 6.9 3.6
    N 17.4 12.1 5.6
    U 34.6 24.4 10.2
    下载: 导出CSV

    表  3  高仰角卫星存在NLOS时抑制前后的定位误差(m)

    PRN15存在NLOS CN0&EI加权 鲁棒定位
    平均值 E 8.6 6.0 1.2
    N 15.2 3.9 1.6
    U 9.4 6.5 2.7
    均方根 E 8.7 7.2 1.2
    N 15.3 4.8 1.9
    U 10.2 7.8 3.3
    最大值 E 11.8 9.5 3.9
    N 21.4 11.8 5.1
    U 18.5 18.3 9.5
    下载: 导出CSV

    表  4  两颗卫星存在NLOS时抑制前后的定位误差(m)

    PRN30, PRN15存在NLOS CN0&EI加权 鲁棒定位
    平均值 E 6.8 5.8 0.9
    N 5.1 3.1 1.5
    U 33.6 7.4 2.7
    E 7.1 6.1 1.1
    均方根 N 5.5 3.7 1.9
    U 33.7 8.5 3.3
    最大值 E 10.6 9.3 3.6
    N 9.5 9.4 5.5
    U 41.6 20.3 9.5
    下载: 导出CSV

    表  5  数据采集参数及可见卫星

    信号参数参数值
    接收机中频(MHz)0
    接收机采样率(MHz)10
    前端带宽(MHz)2
    信号采集时间(s)50
    卫星PRN3,6,14,17,19,22
    定位周期(s)0.5
    下载: 导出CSV

    表  6  不同方法定位后的定位误差(m)

    传统LS定位 CN0&EI加权 鲁棒定位
    平均值 E 27.8 17.3 11.2
    N 60.8 30.2 19.7
    U 43.6 35.1 32.8
    E 35.2 21.9 13.2
    均方根 N 59.2 34.6 22.9
    U 52.6 46.8 41.0
    最大值 E 76.2 57.5 31.2
    N 110.9 79.5 54.5
    U 152.9 150.8 136.1
    下载: 导出CSV
  • [1] 刘小汇, 王怡晨, 文超, 等. 复杂城市环境下的全球导航卫星系统/捷联惯性导航系统组合导航算法[J]. 电子与信息学报, 2023, 45(11): 4150–4160. doi: 10.11999/JEIT230834.

    LIU Xiaohui, WANG Yichen, WEN Chao, et al. Global navigation satellite system/strapdown inertial navigation system integrated navigation algorithm in complex urban environment[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4150–4160. doi: 10.11999/JEIT230834.
    [2] 王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报, 2021, 42(11): 525049. doi: 10.7527/S1000-6893.2021.25049.

    WANG Wei, XING Chaoyang, and FENG Wenshuai. State of the art and perspectives of autonomous navigation technology[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 525049. doi: 10.7527/S1000-6893.2021.25049.
    [3] ZHONG Qiming. Asymmetric positioning for NLOS mitigation[C]. The 36th International Technical Meeting of the Satellite Division of The Institute of Navigation, Denver, USA, 2023: 1905–1927. doi: 10.33012/2023.19336.
    [4] YE Xiaozhou, MA Pengcheng, LIU Wenxiang, et al. How NLOS signals affect GNSS relative positioning[J]. Journal of Physics: Conference Series, 2020, 1693(1): 012184. doi: 10.1088/1742-6596/1693/1/012184.
    [5] MOREAU J, AMBELLOUIS S, and RUICHEK Y. Fisheye-based method for GPS localization improvement in unknown semi-obstructed areas[J]. Sensors, 2017, 17(1): 119. doi: 10.3390/s17010119.
    [6] LIU Xikun, WEN Weisong, and HSU L T. 3D LiDAR aided GNSS NLOS correction with direction of arrival estimation using Doppler measurements[C]. The 36th International Technical Meeting of the Satellite Division of The Institute of Navigation, Denver, USA, 2023: 2206–2216. doi: 10.33012/2023.19447.
    [7] ZHONG Qiming and GROVES P. Optimizing LOS/NLOS modeling and solution determination for 3D-mapping-aided GNSS positioning[C]. The 36th International Technical Meeting of the Satellite Division of The Institute of Navigation, Denver, USA, 2023: 373–402. doi: 10.33012/2023.19406.
    [8] GROVES P D. Shadow matching: A new GNSS positioning technique for urban canyons[J]. Journal of Navigation, 2011, 64(3): 417–430. doi: 10.1017/S0373463311000087.
    [9] LV Xiang, DENG Zhongliang, and YE Nijun. Research on shadow matching algorithm based on consistency probability weighting[C]. China Satellite Navigation Conference (CSNC 2024) Proceedings, Singapore, 2024: 401–410. doi: 10.1007/978-981-99-6928-9_35.
    [10] NG H F, ZHANG Guohao, and HSU L T. Robust GNSS shadow matching for smartphones in urban canyons[J]. IEEE Sensors Journal, 2021, 21(16): 18307–18317. doi: 10.1109/JSEN.2021.3083801.
    [11] GROVES P D and JIANG Ziyi. Height aiding C/N0 weighting and consistency checking for GNSS NLOS and multipath mitigation in urban areas[J]. Journal of Navigation, 2013, 66(5): 653–669. doi: 10.1017/S0373463313000350.
    [12] HSU L T, TOKURA H, KUBO N, et al. Multiple faulty GNSS measurement exclusion based on consistency check in urban canyons[J]. IEEE Sensors Journal, 2017, 17(6): 1909–1917. doi: 10.1109/JSEN.2017.2654359.
    [13] SUZUKI T and AMANO Y. NLOS multipath classification of GNSS signal correlation output using machine learning[J]. Sensors, 2021, 21(7): 2503. doi: 10.3390/s21072503.
    [14] ZHANG Yilang, SUN Yuan, and DENG Zhongliang. Fuzzy C-mean clustering based NLOS signal identification method and localization model in urban canyon environment[C]. 2023 International Technical Meeting of The Institute of Navigation, Long Beach, USA, 2023: 844–858. doi: 10.33012/2023.18656.
    [15] YIN Naishu, HE Di, XIANG Yan, et al. Features effectiveness verification using machine-learning-based GNSS NLOS signal detection in urban canyon environment[C]. The 36th International Technical Meeting of the Satellite Division of The Institute of Navigation, Denver, USA, 2023: 3035–3048. doi: 10.33012/2023.19363.
    [16] COLLINS J P and LANGLEY R B. Possible weighting schemes for GPS carrier phase observations in the presence of multipath[R]. Contract No. DAAH04-96-C-0086, 1999.
    [17] BRUNNER F K, HARTINGER H, and TROYER L. GPS signal diffraction modelling: The stochastic SIGMA-Δ model[J]. Journal of Geodesy, 1999, 73(5): 259–267. doi: 10.1007/s001900050242.
    [18] REALINI E and REGUZZONI M. goGPS: Open source software for enhancing the accuracy of low-cost receivers by single-frequency relative kinematic positioning[J]. Measurement Science and Technology, 2013, 24(11): 115010. doi: 10.1088/0957-0233/24/11/115010.
    [19] LIM C H, ZOUBIR A M, SEE C M S, et al. A robust statistical approach to non-line-of-sight mitigation[C]. 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, USA, 2007: 428–432. doi: 10.1109/SSP.2007.4301294.
    [20] HAMMES U, WOLSZTYNSKI E, and ZOUBIR A M. Semi-parametric geolocation estimation in NLOS environments[C]. 2008 16th European Signal Processing Conference, Lausanne, Switzerland, 2008: 1–5.
    [21] GHOSH S. Kernel Smoothing: Principles, Methods and Applications[M]. Switzerland: John Wiley and Sons Ltd., 2018.
    [22] MEDINA D, LI Haoqing, VILÀ-VALLS J, et al. Robust filtering techniques for RTK positioning in harsh propagation environments[J]. Sensors, 2021, 21(4): 1250. doi: 10.3390/s21041250.
    [23] YIN Feng and ZOUBIR A M. Robust positioning in NLOS environments using nonparametric adaptive kernel density estimation[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012: 3517–3520. doi: 10.1109/ICASSP.2012.6288675.
    [24] DING Yi, FERIOL F, YOKO W, et al. Adaptive robust-statistics GNSS navigation based on environmental context detection[C]. 2023 International Technical Meeting of the Institute of Navigation, Long Beach, USA, 2023: 138–152. doi: 10.33012/2023.18636.
    [25] DANIELE B and PAU C. Complex Signum non-linearity for robust GNSS interference mitigation[J]. IET Radar, Sonar & Navigation, 2018, 12(8): 900–909. doi: 10.1049/iet-rsn.2017.0552.
    [26] GRAMACKI A. Nonparametric Kernel Density Estimation and its Computational Aspects[M]. Cham: Springer, 2018. doi: 10.1007/978-3-319-71688-6.
    [27] SILVERMAN B W. Density Estimation for Statistics and Data Analysis[M]. London: Chapman and Hall, 1986.
    [28] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009: 103–106.

    XIE Gang. Principles of GPS and receiver design[M]. 1st ed. Bei jing: Publishing House of Electronics Industry, 2009: 103–106.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  169
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 修回日期:  2024-05-19
  • 网络出版日期:  2024-05-28
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回