高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泰勒展开与交替投影最大似然结合的离网格DOA估计算法

刘帅 许媛媛 闫锋刚 金铭

刘帅, 许媛媛, 闫锋刚, 金铭. 泰勒展开与交替投影最大似然结合的离网格DOA估计算法[J]. 电子与信息学报, 2024, 46(8): 3219-3227. doi: 10.11999/JEIT231376
引用本文: 刘帅, 许媛媛, 闫锋刚, 金铭. 泰勒展开与交替投影最大似然结合的离网格DOA估计算法[J]. 电子与信息学报, 2024, 46(8): 3219-3227. doi: 10.11999/JEIT231376
LIU Shuai, XU Yuanyuan, YAN Fenggang, JIN Ming. Off-grid DOA Estimation Algorithm Based on Taylor-expansion and Alternating Projection Maximum Likelihood[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3219-3227. doi: 10.11999/JEIT231376
Citation: LIU Shuai, XU Yuanyuan, YAN Fenggang, JIN Ming. Off-grid DOA Estimation Algorithm Based on Taylor-expansion and Alternating Projection Maximum Likelihood[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3219-3227. doi: 10.11999/JEIT231376

泰勒展开与交替投影最大似然结合的离网格DOA估计算法

doi: 10.11999/JEIT231376 cstr: 32379.14.JEIT231376
基金项目: 国家自然科学基金面上项目(62071144, 62171150),泰山学者工程专项经费(tsqn202211087)
详细信息
    作者简介:

    刘帅:男,博士,教授,研究方向为阵列信号处理、空时极化自适应信号处理、雷达电子对抗

    许媛媛:女,硕士生,研究方向为阵列信号处理

    闫锋刚:男,博士,教授,研究方向为反辐射导引头技术、干扰与抗干扰技术、分布式探测与感知、超分辨测量与识别、域特征获取与处理

    金铭:男,博士,教授,研究方向为雷达对抗、空间谱估计、极化阵列信号处理

    通讯作者:

    金铭 jinming0987@163.com

  • 中图分类号: TN911.7

Off-grid DOA Estimation Algorithm Based on Taylor-expansion and Alternating Projection Maximum Likelihood

Funds: The General Projects of National Natural Science Foundation of China (62071144, 62171150), The Taishan Scholars Project Special Funds (tsqn202211087)
  • 摘要: 针对最大似然DOA估计算法需要多维搜索、计算量大且面临着在网格估计的问题,该文提出一种基于泰勒展开的离网格交替投影最大似然算法。该方法首先利用交替投影将多维搜索转化为多个1维搜索,获得对应预设大网格的粗估计结果;再利用矩阵求导理论将1维代价函数在粗估计结果处进行2阶泰勒展开;最后通过对2阶泰勒展开求偏导并令导数等于零,求得离网参数的闭式解。与交替投影最大似然算法相比,该方法突破了搜索网格大小的限制,在保证算法精度的同时,有效减少了算法的在网格计算点数,提升了运算效率。仿真结果证明了该算法的有效性。
  • 图  1  均匀线阵接收信号模型

    图  2  RMSE随信噪比的变化

    图  3  泰勒展开拟合情况

    图  4  算法性能及运行时间随网格大小的变化

    表  1  算法平均运行时间

    本文算法文献[20]算法MLAPML
    理论计算量
    确定计算量
    式(38)
    1.5441×107
    式(39)
    2.1755×105
    式(40)
    3.3272×1012
    式(41)
    1.4788×109
    运行时间(s)0.01088.1673×10–42.5644×1030.9785
    下载: 导出CSV
  • [1] SHAMAEI K and KASSAS Z M. A joint TOA and DOA acquisition and tracking approach for positioning with LTE signals[J]. IEEE Transactions on Signal Processing, 2021, 69: 2689–2705. doi: 10.1109/TSP.2021.3068920.
    [2] LONMO T I B, AUSTENG A, and HANSEN R E. Data-driven autocalibration for swath sonars[J]. IEEE Journal of Oceanic Engineering, 2021, 46(3): 979–987. doi: 10.1109/JOE.2020.3036184.
    [3] SCHMID R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
    [4] ROY R and KAILATH T. ESPRIT — estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276.
    [5] WAX M and ADLER A. Direction of arrival estimation in the presence of model errors by signal subspace matching[J]. Signal Processing, 2021, 181: 107900. doi: 10.1016/j.sigpro.2020.107900.
    [6] SUN Meng, WANG Yide, and PAN Jingjing. Direction of arrival estimation by a modified orthogonal propagator method with spline interpolation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11389–11393. doi: 10.1109/TVT.2019.2944516.
    [7] ASGHARI M, ZAREINEJAD, REZAEI S M, et al. DOA estimation of noncircular signals under impulsive noise using a novel empirical characteristic function-based MUSIC[J]. Circuits, Systems, and Signal Processing, 2023, 42(6): 3706–3743. doi: 10.1007/s00034-022-02289-9.
    [8] LIN Hongguang, JIN Longsheng, DING Ruixuan, et al. DOA estimation method for incoherently distributed sources based on spatial–temporal generalized ESPRIT[J]. AEU - International Journal of Electronics and Communications, 2023, 168: 154701. doi: 10.1016/j.aeue.2023.154701.
    [9] ZHANG Wei, HAN Yong, JIN Ming, et al. An improved ESPRIT-like algorithm for coherent signals DOA estimation[J]. IEEE Communications Letters, 2020, 24(2): 339–343. doi: 10.1109/LCOMM.2019.2953851.
    [10] YANG Zai, CHEN Xinyao, and WU Xunmeng. A robust and statistically efficient maximum-likelihood method for DOA estimation using sparse linear arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6798–6812. doi: 10.1109/TAES.2023.3280894.
    [11] GAO Yumeng, LI Jianghui, BAI Yechao, et al. An improved subspace weighting method using random matrix theory[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1302–1307. doi: 10.1631/FITEE.1900463.
    [12] CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(7): 965–979. doi: 10.1109/29.1618.
    [13] SWINDLEHURST A. Alternative algorithm for maximum likelihood DOA estimation and detection[J]. IEE Proceedings –Radar, Sonar and Navigation, 1994, 141(6): 293–299. doi: 10.1049/ip-rsn:19941366.
    [14] VIBERG M, OTTERSTEN B, and KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. IEEE Transactions on Signal Processing, 1991, 39(11): 2436–2449. doi: 10.1109/78.97999.
    [15] ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553–1560. doi: 10.1109/29.7543.
    [16] FU Haosheng, DAI Fengzhou, and HONG Ling. Off-grid error calibration for DOA estimation based on sparse Bayesian learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16293–16307. doi: 10.1109/TVT.2023.3298965.
    [17] GUO Qijia, XIN Zhinan, ZHOU Tian, et al. Off-grid space alternating sparse Bayesian learning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1002310. doi: 10.1109/TIM.2023.3243677.
    [18] YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378.
    [19] MA Yanan, CAO Xianbin, and WANG Xiangrong. Efficient off-grid DOA estimation based on modified MUSIC for arbitrary linear arrays[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5. doi: 10.1109/ICSIDP47821.2019.9173323.
    [20] 曾富红, 彭占立, 司伟建, 等. 基于双平行互质极化敏感阵列的二维非网格DOA及极化参数估计[J]. 航空兵器, 2023, 30(3): 129–135. doi: 10.12132/ISSN.1673-5048.2022.0191.

    ZENG Fuhong, PENG Zhanli, SI Weijian, et al. Two-dimensional off-grid DOA and polarization parameter estimation for parallel coprime polarization sensitive array[J]. Aero Weaponry, 2023, 30(3): 129–135. doi: 10.12132/ISSN.1673-5048.2022.0191.
    [21] 揭允康, 张雯, 李想, 等. 一种基于迭代自适应的离网格DOA估计方法[J]. 电子与信息学报, 2023, 45(10): 3805–3811. doi: 10.11999/JEIT221061.

    JIE Yunkang, ZHANG Wen, LI Xiang, et al. An off-grid DOA estimation based on iterative adaptive approach[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3805–3811. doi: 10.11999/JEIT221061.
    [22] 张贤达. 矩阵分析与应用[M]. 2版. 北京: 清华大学出版社, 2013: 50.

    ZHANG Xianda. Matrix Analysis and Applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 50.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  66
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-13
  • 修回日期:  2024-05-10
  • 网络出版日期:  2024-06-17
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回