泰勒展开与交替投影最大似然结合的离网格DOA估计算法

刘 帅 许媛媛 闫锋刚 金 铭* (哈尔滨工业大学(威海)信息科学与工程学院 威海 264209)

摘 要:针对最大似然DOA估计算法需要多维搜索、计算量大且面临着在网格估计的问题,该文提出一种基于泰勒展开的离网格交替投影最大似然算法。该方法首先利用交替投影将多维搜索转化为多个1维搜索,获得对应预设大网格的粗估计结果,再利用矩阵求导理论将1维代价函数在粗估计结果处进行2阶泰勒展开,最后,通过对2阶泰勒展开求偏导并令导数等于零,求得离网参数的闭式解。与交替投影最大似然算法相比,该方法突破了搜索网格大小的限制,在保证算法精度的同时,有效减少了算法的在网格计算点数,提升了运算效率。仿真结果证明了该算法的有效性。
 关键词:最大似然算法;交替投影;离网格;泰勒展开

中图分类号: TN911.7 文献标识码: A **DOI**: 10.11999/JEIT231376

文章编号: 1009-5896(2024)00-0001-09

Off-grid DOA Estimation Algorithm Based on Taylor-expansion and Alternating Projection Maximum Likelihood

LIU Shuai XU Yuanyuan YAN Fenggang JIN Ming

(School of Information Science and Engineering, Harbin Institute of Technology (Weihai),

Weihai 264209, China)

Abstract: According to the problem that the maximum likelihood DOA estimation algorithm requires multidimensional search, is computationally intensive, and there is a problem in grid estimation, an Off-grid alternating projection maximum likelihood algorithm based on Taylor expansion is proposed. Firstly, the alternating projection method is used to transform the multi-dimensional search into multiple one-dimensional searches to obtain the rough estimation results corresponding to the preset large grid. Then, the second-order Taylor expansion of the one-dimensional cost function at the rough estimation results is carried out by using the matrix derivation theory. Finally, by calculating the partial derivative of the second-order Taylor expansion and making the derivative equal to zero, the closed-form solution of the off-grid parameters is obtained. Compared with the alternating projection maximum likelihood algorithm, this method breaks through the limitation of the search grid size. While ensuring the accuracy of the algorithm, it effectively reduces the number of points in the grid calculation of the algorithm while ensuring the accuracy of the algorithm, and improves the operation efficiency. Simulation results show the effectiveness of the algorithm.

Key words: Maximum likelihood algorithm; Alternating projection; Off-grid; Taylor expansion

1 引言

波达方向估计(Direction Of Arrival, DOA)作 为阵列信号处理的重要分支之一,在近几十年来得 到了迅猛发展,其应用范围已经涉及诸如雷达、声 呐、通信、导航等众多领域^[1,2]。基于子空间的方 法是最早发展起来的DOA估计方法之一,其中最 具代表性的是多重信号分类算法(Multiple Signal Classification, MUSIC)^[3]和基于旋转子不变技术的 信号参数估计(Estimation of Signal Parameters via Rotational Invariance Techniques, ESPRIT)^[4]。 此外,还有其他一些基于子空间的方法^[5–9]。然 而,这些方法在实际应用中具有一定的局限性,例 如,其需要足够的快拍数才能获得高分辨率的估计 性能,且当多源信号间强相关时,算法性能会下降 甚至失效。20世纪80年代后期开始,出现了一类子

收稿日期: 2023-12-13; 改回日期: 2024-05-10; 网络出版: 2024-06-17 *通信作者: 金铭 jinming0987@163.com

基金项目: 国家自然科学基金面上项目(62071144,62171150), 泰 山学者工程专项经费(tsqn202211087)

Foundation Items: The General Projects of National Natural Science Foundation of China (62071144, 62171150), Taishan Scholars Project Special Funds (tsqn202211087)

空间拟合类算法^[10-12]。其中,最大似然算法参数 估计类方法是参数估计理论中一种典型和实用的估 计方法。与子空间分解类算法相比,该类算法估计 性能优良,尤其在低信噪比、小快拍数据情况下。 此外,该类算法在相干源情况下仍能有效工作。

最大似然算法的方向估计似然函数是非线性 的,在参数求解的过程中,其存在着多维搜索及在 网格估计的问题。针对于多维搜索问题,现有的多 维优化算法主要有多项式参数化(Method of Direction Estimation, MODE)算法、修正变量投影 (Modified Variable Projection, MVP)算法以及交 替投影(Alternating Projection, AP)算法。多项式 参数化算法可以在2维空间谱中,利用相互耦合的 不同轴向的阵列流型对投影矩阵进行参数表示,将 2维空间搜索降维成两个1维搜索,但该算法要求阵 型必须为方阵[13]。修正变量投影算法针对信号子空 间算法提出,同样适用于多维非线性最大化问题, 但信号相关系数较高时算法性能会发生恶化[14]。交 替投影算法是通过迭代实现的,在迭代的每一步, 其均相对于一个参数进行优化,而其他参数保持不 变,将多维搜索转化为了多个1维搜索,降低了计 算量。但是,该类算法在参数估计的过程中同样面 临着在网格计算的问题[15],其需要较小的网格才能 保持高的估计精度,此时搜索速度较慢,算法效率 较低,不能满足工程应用中实时性的要求;而当网 格增大时,算法效率提高,相应地,算法性能便会 下降。

离网格参数估计可以平衡计算效率和计算精度 之间的关系,近年来引起了研究人员的广泛重视。 目前已有研究成果主要集中在压缩感知(Compress Sensing, CS)理论、稀疏重构技术领域^[16,17]。以稀 疏重构DOA估计方法为例,该方法需要选择一个 稀疏度量,在预定的离散字典网格上进行信号的重 构,然而实际上待估计信源的位置往往不会正好落 在网格上,不可避免地会存在离网偏差。针对该问 题, 文献[18]提出了一种离网格模型, 在信号真实 到达角处采用1阶泰勒展开式近似表示,使得估计 性能进一步提高。在此基础上, 文献[19,20]将离网 格思想引入MUSIC算法,将导向矢量进行1阶泰勒 展开,通过应用信号子空间与噪声子空间的正交性 估计出离网偏差,降低了预设网格带来的固有偏 差,实现了参数估计性能的提升。文献[21]提出了 一种基于泰勒展开求解离网参数的方法,该方法通 过将平方误差代价函数2阶泰勒展开并最小化得到 初始偏移量,然后对其不断优化,实现了高精度的 离网格DOA估计。综上,已有离网格DOA估计方 法大体可以分为两类,其一是基于导向矢量的泰勒 展开,该类方法通过对导向矢量进行1阶泰勒展开 构造离网格模型,在获得粗估计值的基础上,对离 网参数进行优化求解,但最大似然算法代价函数较 复杂,难以应用此类方法实现离网参数的估计;其 二是通过构造代价函数的2阶展开,实现离网格 DOA估计,但最大似然涉及多维寻优,该类方法 也无法直接应用于最大似然算法。

基于此,本文针对最大似然离网格参数估计问 题开展研究,提出了基于泰勒展开的离网格交替投 影最大似然算法。该方法首先利用交替投影算法将 多维搜索转化为1维搜索,并得到对应预定义大网 格的粗估计结果;其次,在粗估计结果处基于矩阵 求导理论对1维代价函数进行2阶泰勒展开,构造新 的近似代价函数;然后,对该近似代价函数求偏导 并令导数等于零,求得离网参数的闭式解,更新参 数估计结果,并采用交替投影技术对其不断迭代优 化,直至满足收敛条件,实现参数精确估计,达到 估计精度和计算效率的统一;最后,通过仿真验证 了所提算法的有效性。

2 信号模型与经典最大似然算法

2.1 信号模型

考虑由空间距离为半波长 $d = \lambda/2$ 的M个阵元 组成的均匀线阵和P个窄带远场信号,第 $p(p = 1, 2, \dots, P)$ 个信号的方位角为 p_p 如图1所示。

假设入射信号互不相关且与噪声之间相互独 立,则该阵列的接收信号可以表示为

$$\boldsymbol{y}(t) = \boldsymbol{A}\boldsymbol{s}(t) + \boldsymbol{n}(t) \tag{1}$$

式中, $A = [a_{\theta_1}, a_{\theta_2}, \dots, a_{\theta_P}] \in \mathbb{C}^{M \times P}$ 为阵列信号的 阵列流形矩阵, $s(t) = [s_1(t), s_2(t), \dots, s_P(t)]^{\mathrm{T}} \in \mathbb{C}^{P \times 1}$ 为P个相互独立的入射信源, $n(t) = [n_1(t), n_2(t), \dots, n_M(t)]^{\mathrm{T}} \in \mathbb{C}^{M \times 1}$ 为均值为零,方差为 σ^2 的加性高斯白噪声。

第m个阵元空域导向矢量 $a_m(\theta)$ 具有形式

$$\boldsymbol{a}_m(\theta) = \exp(-j2\pi f \tau_m) \tag{2}$$

式中,f为信号频率, $\tau_m(m=1,2,\cdots,M)$ 为不同阵

图 1 均匀线阵接收信号模型

元间的空间延迟,对于均匀线阵而言,以最左边的 阵元为参考点(位于原点),其具体的表达形式为

$$\tau_m = \frac{1}{c} (x_m \sin\theta) \tag{3}$$

式中, $c = 3 \times 10^8 \text{ m/s}$ 为光速, x_m 为第m个阵元相 对原点的坐标。

通过采集L个快拍,接收数据矩阵表示为

$$Y = AS + N \tag{4}$$

式中, $Y = [y(1), y(2), \dots, y(L)] \in \mathbb{C}^{M \times L}$, $S = [s(1), s(2), \dots, s(L)] \in \mathbb{C}^{P \times L}$, $N = [n(1), n(2), \dots, n(L)] \in \mathbb{C}^{M \times L}$

2.2 经典最大似然算法

基于2.1节建立的阵列模型,阵列接收信号的 协方差矩阵理论表达式为

$$\boldsymbol{R} = \mathbf{E}[\boldsymbol{Y}\boldsymbol{Y}^{\mathrm{H}}] = \boldsymbol{A}\boldsymbol{R}_{\boldsymbol{S}}\boldsymbol{A}^{\mathrm{H}} + \sigma^{2}\boldsymbol{I}$$
(5)

式中, $(\cdot)^{H}$ 为矩阵的共轭转置; R_{S} 为信号的协方 差矩阵; $I \in \mathbb{C}^{M}$ 为单位阵。在实际运算中,考虑 到接收数据长度是有限的,所以阵列协方差矩阵估 计表达式为

$$\hat{\boldsymbol{R}} = \frac{1}{L} \sum_{t=1}^{L} \boldsymbol{y}(t) \boldsymbol{y}^{\mathrm{H}}(t)$$
(6)

在满足上述条件下,假设信源数己知或通过其 他方式估计己获得,则由确定性最大似然(DML), 可得样本数据L次快拍的联合概率密度函数为

$$f\{\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_L\} = \prod_{i=1}^L \frac{1}{\det\{\pi \sigma^2 \boldsymbol{I}\}} \\ \cdot \exp\left(-\frac{1}{\sigma^2}|\boldsymbol{y}_i - \boldsymbol{A}\boldsymbol{s}_i|^2\right) \quad (7)$$

式中, det{·}为该矩阵的行列式, $y_i \triangleq y(i)$, $s_i \triangleq s(i)$ 。

经过数学推导,可得到关于参量θ的最大似然 估计

$$\hat{\theta} = \operatorname{argmax} \operatorname{tr}(\boldsymbol{P}_{\boldsymbol{A}}\hat{\boldsymbol{R}}) \tag{8}$$

式中, $\operatorname{tr}(\cdot)$ 为求矩阵的迹; $P_A^{\perp} = I - P_A$ 为正交 投影矩阵; $P_A = AA^{\dagger} = A(A^{\mathrm{H}}A)^{-1}A^{\mathrm{H}}$; $(\cdot)^{\dagger}$ 为 矩阵的广义逆, $A^{\dagger} = (A^{\mathrm{H}}A)^{-1}A^{\mathrm{H}}$ 。

由于求解式(8)需要用多维非线性在网格搜索 实现,为克服该求解过程中计算量过大的问题,本 文对基于泰勒展开的离网格交替投影最大似然算法 开展研究,以期完善离网格最大似然相关理论,推 动最大似然算法的工程应用。

3 基于泰勒展开的离网格交替投影最大似 然算法

3.1 算法原理

交替投影(AP)算法是一种基于交替优化方法 和投影矩阵分解的方法,该方法是通过迭代实现 的。在迭代的每一步,仅对一个参数进行优化,而 其他参数保持不变,于是第p个角度的第k+1迭代 $\hat{\theta}_p^{(k+1)}$ 可以通过下面的1维优化问题得到

$$\hat{\theta}_{p}^{(k+1)} = \max_{\theta_{p}} \operatorname{tr}(\boldsymbol{P}_{[\boldsymbol{A}(\hat{\boldsymbol{\Theta}}_{(p)}^{(k)}), \boldsymbol{a}(\theta_{p})]} \hat{\boldsymbol{R}})$$
(9)

式中, $\hat{oldsymbol{ heta}}_{(p)}^{(k)}$ 表示P-1维己计算出的参数矢量,其为

$$\hat{\boldsymbol{\Theta}}_{(p)}^{(k)} = [\hat{\theta}_1^{(k)}, \hat{\theta}_2^{(k)}, \cdots, \hat{\theta}_{p-1}^{(k)}, \hat{\theta}_{p+1}^{(k)}, \cdots, \hat{\theta}_P^{(k)}]$$
(10)

文献[15]提出了一种简单有效的初始化方法:

首先,求出第1个信号的DOA估计值,这时有

$$\hat{\theta}_1^{(0)} = \max_{\boldsymbol{\theta}_1} \operatorname{tr}(\boldsymbol{P}_{\boldsymbol{a}(\boldsymbol{\theta}_1)}\hat{\boldsymbol{R}}) \tag{11}$$

然后,假定第一个信号源位于 $\hat{ heta}_1^{(0)}$,求出第二 个信号的DOA值,即

$$\hat{\theta}_2^{(0)} = \max_{\theta_2} \operatorname{tr}(\boldsymbol{P}_{[\boldsymbol{a}(\hat{\theta}_1^{(0)}), \boldsymbol{a}(\theta_2)]} \hat{\boldsymbol{R}})$$
(12)

按照上面的方法进行下去,在第p次迭代时, 保持前p-1个计算好的值不变,求出 $\hat{\theta}_p^{(0)}$,如此直 至求出P个初始值。

由式(9)可知,利用交替投影法实现最大似然 参数估计时,需要在参数取值范围内划分计算网 格,然后逐点计算代价函数的值。由于实际信号的 入射角可能来自于任何方向,信号入射角大概率不 会落在划分的网格点上,进而导致参数估计出现离 网偏差。针对上述问题,本文首先利用(9)式得到 θ_p 角的粗估计值 $\hat{\theta}_{p,n}$,然后在 $\hat{\theta}_{p,n}$ 的邻域内,对代 价函数进行2阶泰勒展开,基于矩阵求导原理推导 代价函数的1阶、2阶导数表达式,最终得到最大似 然离网格参数估计的闭式解。该算法在实现高精度 离网格参数估计的同时,有效降低了算法的计算复 杂度。算法具体过程如下:

取交替投影过程中的1维代价函数

$$L(\theta) = \operatorname{tr}(\boldsymbol{P}_{[\boldsymbol{A}(\hat{\boldsymbol{\Theta}}_{(p)}^{(k)}), \boldsymbol{a}(\theta_p)]}\hat{\boldsymbol{R}})$$
(13)

在目标函数L中对第p个信源的粗估计结果 $\hat{\theta}_{p,n}$ 进行2阶泰勒展开,构造新的近似代价函数

$$\tilde{L}(\delta_p) = L(\hat{\theta}_{p,n}) + L'(\hat{\theta}_{p,n})\delta_p + \frac{1}{2}L''(\hat{\theta}_{p,n})\delta_p^2 \quad (14)$$

式中, $\delta_p = \theta_p - \hat{\theta}_{p,n}$ 为 $\hat{\theta}_{p,n}$ 的偏移量; $L'(\hat{\theta}_{p,n})$ 和 $L''(\hat{\theta}_{p,n})$ 分别为 $L(\hat{\theta})$ 在 $\hat{\theta}_{p,n}$ 处的1阶导数值和2阶导 数值。从式(14)中可以看出,近似代价函数值 $\tilde{L}(\delta_p)$ 与预定义大网格下的粗估计值 $\hat{\theta}_{p,n}$ 有关,则近似精 度与预定义网格大小有关。预定义网格较小,近似 代价函数与原代价函数之间的偏差较小,同时,算 法运算时间较长;预定义网格较大,算法运行时间 较短,但是,近似代价函数与原代价函数之间的偏 差也就较大。为平衡算法运行时间和精度之间的关 系,应选择合适的预定义网格大小,仿真实验3针 对此问题进行了仿真分析。

为了求出近似代价函数 \tilde{L} 的最大值,将 \tilde{L} 对偏移量 δ_{v} 求导,并令其导数为零,解得

$$\delta_p = -\frac{L'(\hat{\theta}_{p,n})}{L''(\hat{\theta}_{p,n})} \tag{15}$$

则根据以上分析, 第*p*个信源的离网格估计结果为

$$\hat{\theta}_p^{(k+1)} = \hat{\theta}_{p,n} + \delta_p \tag{16}$$

注意到,离网格参数的求解与代价函数的导数 有关,为得到离网格参数估计的闭式解,本文对其 进行推导。

由矩阵迹的性质

$$d(tr \boldsymbol{X}) = tr(d \boldsymbol{X})$$
(17)

可将式(15)中1维代价函数 $L(\theta) = tr(\mathbf{P}_B \hat{\mathbf{R}})$ 的1阶导数 $L'(\theta)$ 及2阶导数 $L''(\theta)$ 整理为

$$L'(\theta) = \frac{\operatorname{dtr}(\boldsymbol{P}_B \hat{\boldsymbol{R}})}{d\theta} = \operatorname{tr}(\boldsymbol{P}_B' \hat{\boldsymbol{R}})$$
(18)

$$L''(\theta) = \frac{\mathrm{d}^2 \mathrm{tr}(\boldsymbol{P}_B \hat{\boldsymbol{R}})}{\mathrm{d}\theta^2} = \mathrm{tr}(\boldsymbol{P}_B'' \hat{\boldsymbol{R}})$$
(19)

式中, P_{B}', P_{B}'' 分别代表投影矩阵 $P_{B} = BB^{\dagger} = B(B^{H}B)^{-1}B^{H}$ 的1阶导数和2阶导数, $B(\theta) = [A(\hat{O}^{(k)}), a(\theta)]$ 为交替投影过程中第k次迭代第p次交替投影的导向矢量,则有

$$\boldsymbol{B'}(\theta) = [0, \boldsymbol{a'}(\theta)] \tag{20}$$

$$\boldsymbol{B''}(\theta) = [0, \boldsymbol{a''}(\theta)] \tag{21}$$

式中, $a'(\theta)$, $a''(\theta)$ 分别代表 $a(\theta)$ 的1阶导数和2阶 导数。

首先推导投影矩阵的1阶导数,利用求导数的 链式法则,得

$$\boldsymbol{P}_{\boldsymbol{B}}' = \boldsymbol{B}'\boldsymbol{B}^{\dagger} + \boldsymbol{B}\boldsymbol{B}^{\dagger'} \tag{22}$$

伪逆矩阵
$$\mathbf{B}^{\dagger} = (\mathbf{B}^{\mathrm{H}}\mathbf{B})^{-1}\mathbf{B}^{\mathrm{H}}$$
的1阶导数 \mathbf{B}^{\dagger} 为

$$B^{\dagger'} = ((B^{\rm H}B)^{-1})'B^{\rm H} + (B^{\rm H}B)^{-1}B^{\rm H'}$$
(23)

由矩阵微分的性质

$$d(\boldsymbol{X}^{-1}) = -\boldsymbol{X}^{-1}(d\boldsymbol{X})\boldsymbol{X}^{-1}$$
(24)

有

$$((B^{\rm H}B)^{-1})' = -((B^{\rm H}B)^{-1})(B^{\rm H}B)'((B^{\rm H}B)^{-1})$$

= -(B^{\rm H}B)^{-1}B^{H'}B(B^{\rm H}B)^{-1}
-(B^{\rm H}B)^{-1}B^{\rm H}B'(B^{\rm H}B)^{-1}(25)

$$\begin{split} \boldsymbol{B}^{\dagger'} &= ((\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1})'\boldsymbol{B}^{\mathrm{H}} + (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'} \\ &= -(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'}\boldsymbol{B}(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}} \\ &- (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B}'(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}} \\ &+ (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'} \\ &= (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'}(\boldsymbol{I} - \boldsymbol{B}(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}}) \\ &- (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B}'(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}} \\ &= (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B}'(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}} \end{split}$$

$$&= (\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'}\boldsymbol{P}_{\boldsymbol{B}}^{\perp} - \boldsymbol{B}^{\dagger}\boldsymbol{B}'\boldsymbol{B}^{\dagger} \qquad (26) \\ & \boldsymbol{\mathrm{\ddot{H}}} - \boldsymbol{\mathrm{\ddot{H}}} , \ \boldsymbol{\mathrm{\ddot{H}}} \, \mathrm{Kat}(26)(\boldsymbol{\mathrm{T}}\boldsymbol{\mathrm{A}}\mathrm{t}(22)) \boldsymbol{\mathrm{\ddot{H}}} \boldsymbol{\mathrm{\tilde{B}}} \, \mathrm{Hat} \boldsymbol{\mathrm{H}}$$

$$P_{B}' = B'B^{\dagger} + BB^{\dagger'}$$

= $B'B^{\dagger} + B((B^{H}B)^{-1}B^{H'}P_{B}^{\perp} - B^{\dagger}B'B^{\dagger})$
= $P_{B}^{\perp}B'B^{\dagger} + (P_{B}^{\perp}B'B^{\dagger})^{H}$
(27)

式中,
$$P_B^{\perp} = I - P_B$$
。
结合式(27),可将式(18)整理为

$$L'(\theta) = \operatorname{tr}((\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger} + (\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger})^{\mathrm{H}})\hat{\boldsymbol{R}})$$

= $\operatorname{tr}(\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}) + \operatorname{tr}((\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger})^{\mathrm{H}}\hat{\boldsymbol{R}})$ (28)

阵列接收数据协方差矩阵具有共轭对称性,即

$$\boldsymbol{R}^{\mathrm{H}} = \boldsymbol{R} \tag{29}$$

又,矩阵的迹存在以下性质[22]

 $tr(\boldsymbol{A}\boldsymbol{B}) = tr(\boldsymbol{B}\boldsymbol{A}) \tag{30}$

$$\operatorname{tr}(\boldsymbol{A}^{\mathrm{H}}) = [\operatorname{tr}(\boldsymbol{A})]^{*}$$
(31)

则代价函数的1阶导数L'(θ)可整理为

$$L'(\theta) = 2\operatorname{Re}(\operatorname{tr}(\boldsymbol{P}_B^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}))$$
(32)

式中, Re(·)表示取实部。

下面对投影矩阵的2阶导数进行推导:

$$P_{B}^{\prime\prime} = P_{B}^{\perp\prime} B^{\prime} B^{\dagger} + P_{B}^{\perp} B^{\prime\prime} B^{\dagger} + P_{B}^{\perp} B^{\prime} B^{\dagger\prime} + (P_{B}^{\perp\prime} B^{\prime} B^{\dagger} + P_{B}^{\perp} B^{\prime\prime} B^{\dagger} + P_{B}^{\perp} B^{\prime} B^{\dagger\prime})^{\mathrm{H}}$$
(33)

注意到, $P_B^{\perp} = I - P_B$, 则有 $P_B^{\perp'} = -P_B'$, 结合式(27),式(33)可整理为

将式(34)代入式(19),代价函数的2阶导数 [/'(θ)可整理为

$$L''(\theta) = \operatorname{tr}((-2\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\boldsymbol{B}'\boldsymbol{B}^{\dagger} - (\boldsymbol{B}^{\dagger})^{\mathrm{H}}(\boldsymbol{B}')^{\mathrm{H}}$$
$$\cdot \boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger} + \boldsymbol{P}_{B}^{\perp}\boldsymbol{B}''\boldsymbol{B}^{\dagger} + \boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}$$
$$\cdot \boldsymbol{B}^{\mathrm{H}'}\boldsymbol{P}_{B}^{\perp})\hat{\boldsymbol{R}} + (-2\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\boldsymbol{B}'\boldsymbol{B}^{\dagger}$$
$$- (\boldsymbol{B}^{\dagger})^{\mathrm{H}}(\boldsymbol{B}')^{\mathrm{H}}\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger} + \boldsymbol{P}_{B}^{\perp}\boldsymbol{B}''\boldsymbol{B}^{\dagger}$$
$$+ \boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'}\boldsymbol{P}_{B}^{\perp})^{\mathrm{H}}\hat{\boldsymbol{R}}) \quad (35)$$

结合矩阵的迹的性质及接收数据协方差的性质,可 进一步将式(35)整理为

$$L''(\theta) = 2\operatorname{Re}(\operatorname{tr}(-2\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}) - \operatorname{tr}((\boldsymbol{B}^{\dagger})^{\mathrm{H}}(\boldsymbol{B}')^{\mathrm{H}}\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}) + \operatorname{tr}(\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}''\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}) + \operatorname{tr}(\boldsymbol{P}_{B}^{\perp}\boldsymbol{B}'(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'}\boldsymbol{P}_{B}^{\perp}\hat{\boldsymbol{R}}))$$
(36)

在得到代价函数的1阶、2阶导数表达式后,综合式(15),得到第p个信源的离网偏差 δ_p 为

$$\begin{split} \delta_p &= -\frac{L'(\theta_{p,n})}{L''(\hat{\theta}_{p,n})} \\ &= -\frac{\operatorname{Re}(\operatorname{tr}(\boldsymbol{P}_B^{\perp}\boldsymbol{B'}\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}))}{\operatorname{Re}(\operatorname{tr}(\boldsymbol{P}_B^{\perp}\boldsymbol{B'}\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}))} \end{split}$$

$$= -\frac{1}{\operatorname{Re}(\operatorname{tr}(-2\boldsymbol{P}_{B}^{\perp}\boldsymbol{B'}\boldsymbol{B}^{\dagger}\boldsymbol{B'}\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}) - \operatorname{tr}((\boldsymbol{B}^{\dagger})^{\mathrm{H}}(\boldsymbol{B'})^{\mathrm{H}}\boldsymbol{P}_{B}^{\perp}\boldsymbol{B'}\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}})} \\ + \operatorname{tr}(\boldsymbol{P}_{B}^{\perp}\boldsymbol{B''}\boldsymbol{B}^{\dagger}\hat{\boldsymbol{R}}) + \operatorname{tr}(\boldsymbol{P}_{B}^{\perp}\boldsymbol{B'}(\boldsymbol{B}^{\mathrm{H}}\boldsymbol{B})^{-1}\boldsymbol{B}^{\mathrm{H}'}\boldsymbol{P}_{B}^{\perp}\hat{\boldsymbol{R}}))$$

综上所述,本文所提算法在交替投影将多维搜 索转换为多个1维搜索的基础上,利用矩阵分析的 相关理论,推导了1维代价函数的1阶导数和2阶导 数,并利用2阶泰勒展开近似表示最大似然代价函 数,求得了离网格参数的闭式表达式,实现了参数 的高精度离网格估计,算法具体的步骤如下:

步骤1 通过阵列接收数据Y,根据式(11)、 式(12)进行初值估计,得到空间角度的P个初始估 计值 $\hat{\theta}_1^{(0)}, \hat{\theta}_2^{(0)}, \dots, \hat{\theta}_P^{(0)}$ 。

步骤2 根据式(9)进行1次1维搜索得到第 p(p=1,2,...,P)个角度大网格对应的参数粗估计结 果 $\hat{\theta}_{p,n}$ 。

步骤3 计算代价函数 $L(\theta)$ 的1阶导数 $L'(\hat{\theta}_{p,n})$ 和2阶导数 $L''(\hat{\theta}_{p,n})$,其中 $L'(\hat{\theta}_{p,n})$ 由式(32)计算, $L''(\hat{\theta}_{p,n})$ 由式(36)计算。

步骤4 利用式(37)得到离网参数 δ_p ,根据式(16) 更新参数估计结果,得到第p个角度的第k + 1迭代 估计值 $\hat{\theta}_p^{(k+1)}$ 。

步骤5 重复步骤2-4,交替优化参数估计结果,当满足搜索精度或达到最大迭代次数时结束循环,得到空间角度的P个估计值 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_P$ 。

3.2 算法计算复杂度分析

在计算复杂度方面,本文提出算法的计算量可 分为阵列协方差矩阵计算、代价函数计算、离网参 数计算3部分。为方便分析,假设算法对应的导向 矢量通过正余弦查表得到,暂不考虑其计算量,与 计算量有关的参数为阵元个数M、入射信源个数P、快拍数L、迭代次数 i_{max} 。不失一般性,假设空间角度的搜索范围为其值域范围,即 $-90^\circ \le \theta \le 90^\circ$,令1次1维搜索点数为 N_1 。

3.2.1 阵列协方差矩阵计算

两个复数相乘的计算量为(4m + 2a)(m表示乘法运算, a表示加法运算,下同),因此其单快拍自 $相关矩阵的计算量为<math>M \times M \times (4m + 2a),$ 对L个 快拍,阵列自相关矩阵的计算量为 $L \times M^2 \times (4m + 4a)$ 。

3.2.2 1 维代价函数计算

代价函数部分的计算量由需要计算的代价函数 点数和每点所需的计算量确定。本文算法利用交替 投影技术将P维搜索转化为P次1维搜索,首先需 要进行P次1维搜索以完成初值估计,搜索的点数 为 $P \times N_1$;之后进行 i_{max} 次迭代,每次迭代同样 需要进行P次1维搜索,搜索次数为 $i_{max} \times P \times N_1$;则本文算法总共所需计算的代价函数点 数为 $(i_{max}+1) \times P \times N_1$ 。每个函数点涉及的计算 量包括投影矩阵的计算、投影矩阵与协方差矩阵相 乘得到的矩阵 P_R 的计算以及 P_R 的迹的求解计算。 其中,计算投影矩阵的计算、包影矩阵与协方差矩阵相 乘得到的矩阵 P_R 的计算以及 P_R 的迹的求解计算。 其中,计算投影矩阵的计算量为 $((P-1)P(P+1)/6+M^2P+2MP^2) \times (4m+2a) + ((P-1))$ $P(P+1)/6M^2P+2MP^2) \times 2a$,计算 P_R 需要的计 算量为 $M^2 \times M \times (4m+2a) + M^2 \times M \times 2a$,计算 P_R 的迹需要的计算量为 $M \times 2a$,整理后可得代价

(37)

函数计算所需要的计算量为 $(i_{max}+1) \times P \times$ $N_1 \times [((P-1)P(P+1)/6 + M^2P + 2MP^2 + M^3) \times (4m+4a) + M \times 2a]_{\circ}$

3.2.3 离网参数求解

离网参数的求解仅需要在迭代过程中进行,求解次 数为 $i_{max} \times P$,其计算量由1阶导数的计算量和2阶 导数的计算量确定。其中,1阶导数的计算量和2阶 量为 $(M^3 + 3M^2P + 4MP^2 + (P-1)P(P+1)/3) \times$ $(4m + 4a) + (M^2 + M) \times 2a, 2阶导数的计算量为$ $(6M^3 + 11M^2P + 6MP^2 + (P-1)P(P+1)/2) \times$ $(4m + 4a) + (M^2 + 4M) \times 2a + M^2 \times 2m, 整理后$ 可得离网参数求解所需要的计算量为 $i_{max} \times P \times$ $[(7M^3 + 14M^2P + 10MP^2 + 5(P-1)P(P+1)/6) \times$ $(4m + 4a) + (M^2 + 5M) \times 2a + M^2 \times 2m]$ 。

整理可得本文所提算法所需计算量为

$$C = \{L \times M^{2} + (i_{\max} + 1) \times P \times N_{1} \times ((P - 1)) \\ \cdot P(P + 1)/6 + M^{2}P + 2MP^{2} + M^{3}) \\ + i_{\max} \times P \times (7M^{3} + 14M^{2}P + 10MP^{2}) \\ + 5(P - 1)P(P + 1)/6)\} \times (4m + 4a) \\ + \{(i_{\max} + 1) \times P \times N_{1} \times M + i_{\max}) \\ \times P \times (M^{2} + 5M)\} \times 2a + i_{\max} \\ \times P \times M^{2} \times 2m$$
(38)

注意到,M > P,则算法计算复杂度为 $O(LM^2) + O(i_{\max}N_1M^3P)$ 。

4 仿真验证

由本文的分析过程可知,该算法对阵型无限制,下面仅以均匀线阵为例进行分析。仿真所用阵列为10阵元均匀线阵,阵元间距为入射信号波长的1/2;入射信号由两个中心频率为200 MHz的独立信源生成,快拍数据长度为100。

实验1 验证本文算法测角性能。选取ML算法、基于交替投影的最大似然(Alternating Projection Maximum Likelihood, APML)算法和文献[20] 算法为对比算法,其中本文所提算法及文献[20]所提算法的搜索网格为1°,ML算法及APML算法的搜索网格为0.01°。仿真中取信号入射角度为最坏情况(位于网格中央),分别为-8.5°,8.5°,信噪比以2 dB间隔在0~20 dB变化,进行200次蒙特卡洛实验,得到波达方向估计RMSE结果随信噪比的变化如图2所示,统计各算法平均运行时间如表1所示。

由图2可以看出,本文算法测角性能优于文献[20] 所提算法、ML算法及APML算法;同时,随着信 噪比的增大,本文所提算法测角性能改善越来越 好,信噪比为20 dB时,本文算法与细网格ML算 法相比DOA估计性能可提高约25.8%。这是因为本 文算法在粗网格估计的基础上,采用泰勒展开进行 离网偏差的闭式求解,因此在采用大网格搜索也可 达到与细网格ML算法一致的测角性能;此外,本 文所提算法所得为闭式解,与细网格ML算法相比 估角结果精度更高,估角结果也更加精确。需要注 意的是,本文从实际工程应用中高精度要求出发, ML算法与APML算法采用较小的网格以达到较高 的精度,而本文算法与文献[20]所提算法为离网格 DOA估计算法,采用较大的网格即可达到较高的 精度,因此,两类算法采用不同的搜索网格。

采用3.2节相同方法,分析文献[20]算法、ML 算法及APML算法计算量,与本文方法的计算量进 行对比。

文献[20]算法:

$$C_{[20]} = \{L \times M^2 + N_1 \times (M - P) \times (M + 1) + P \times [3M(M - P) + 2M - P]\} \times (4m + 4a) + M^3 \times (4m + 2a)$$
(39)

算法计算复杂度为O(LN₁M⁴)。

ML算法:

$$C_{ML} = \{L \times M^2 + N_2{}^P \times ((P-1)P(P+1)/6 + M^2P + 2MP^2 + M^3)\} \times (4m+4a) + N_2{}^P \times M \times 2a$$
(40)

算法计算复杂度为 $O(LM^2) + O(N_2^P M^3)$ 。 APML算法:

图 2 RMSE随信噪比的变化

表 1 算法平均运行时间

	本文算法	文献[20]算法	ML	APML
理论计算量	式(38)	式(39)	式(40)	式(41)
确定计算量	1.5441×10^{7}	$2.1755{ imes}10^5$	$3.3272{\times}10^{12}$	1.4788×10^{9}
运行时间(s)	0.0108	$8.1673 imes 10^{-4}$	2.5644×10^{3}	0.9785

算法计算复杂度为 $O(LM^2) + O(i_{\max}N_2M^3P)$ 。

式中, N_1 为本文所提算法及文献[20]算法的网格点数, N_2 为ML算法及APML算法的网格点数。

在此基础上,取算法迭代次数 $i_{max} = 3$, L = 100,M = 10,P = 2, $N_1 = 181$, $N_2 = 18001$ 计算各算法的理论计算量,同时与蒙特卡洛实验统 计得到的各算法运行时间进行横向对比,得到对比 结果如表1所示。

由表1可知,4种算法的理论计算量之比约为 1:0.0141:215000:96;4种算法运行时间之比为1:0.0756: 237 000:91。其中,ML算法主要进行N₂^P次代价函数值计算,APML算法主要进行(*i*max + 1)PN₂ 次代价函数值计算,为保证算法精度,取较大N₂ 值时,计算量较大;本文所提算法主要进行(*i*max + 1) PN₁次代价函数值计算以及*i*maxP次离网参数的求 解,与ML算法及APML算法相比计算量较小;文 献[20]算法主要进行N₁次谱函数值计算以及P次离 网参数的求解,与本文算法相比,计算量更小,但 是,从图2可以看出,该方法参数估计性能略逊于 本文算法,且受MUSIC算法本身的限制,该算法 无法实现相干源条件下参数估计。 综上所述,本文提出的算法在保证算法精度的 基础上,缩短了运行时间,大大提高了算法效率, 保证了最大似然算法在实际工程应用中的实时性 要求。

实验2本文算法适用性验证。仿真中固定信 噪比为20 dB,本文方法计算网格分别取0.5°,1°, 1.5°,2°,将本文所提泰勒展开构造的近似代价函 数与0.01°网格情况下ML算法代价函数作对比,其 结果如图3所示。

从图3中可以看出,在0.5°小网格情况下,2阶 泰勒展开的近似代价函数可实现对ML算法代价函 数的完美拟合;但随着网格逐渐增大,近似代价函 数的拟合误差逐渐增大,进而导致离网格角度估计 误差增大,影响算法的性能。因此在实际工程应用 中,网格选取不宜过大,过大的网格将会带来较大 的测角误差。

实验3 考察本文所提算法性能及运行时间随 网格大小的变化关系。仿真中假定信号入射角度处 于网格正中间(对应最差的离网格估计情况),固定 信噪比为20 dB,网格大小以0.1°间隔在0.5~2.5° 之间变化,进行500次蒙特卡洛实验,分别统计算 法的参数估计精度和运行时间,得到仿真结果如图4 所示。

从图4可以看出,随着网格大小的增大,算法 运行时间逐渐减小,其原因在于算法搜索次数随着

图 4 算法性能及运行时间随网格大小的变化

网格增大而减小。但值得注意的是,算法性能随着 网格大小的增大逐渐变差,这是由于泰勒展开拟合 效果受网格大小影响,当网格大小较大时,拟合效 果下降,进而导致本文所提算法性能下降。同时, 随着网格大小越来越小,算法性能改善效果不大, 这是因为当网格大小为1.5°左右时,利用2阶泰勒 展开得到的近似代价函数几乎可以与原代价函数完 美拟合,网格大小进一步减小,拟合效果改善较 小,对本文算法性能改善效果不明显。在实际工程 应用中,网格大小的选取需要根据算法性能需要与 算法效率需求综合考虑,一般情况下,网格大小可 取1.5°。

5 结束语

本文提出了一种基于泰勒展开的离网格交替投影最大似然算法。该算法在利用交替投影技术将多 维代价函数寻优转化为多个1维代价函数寻优的基 础上,通过矩阵导数运算原理,推导了代价函数的 1阶、2阶导数表达式,在此基础上对代价函数进行 2阶泰勒展开构造新的近似代价函数,进一步求偏 导令其等于零得到离网偏差的闭式表达式,突破了 搜索网格大小的限制,减少了算法搜索的次数,在 保证精度的同时降低了运算复杂度,进一步平衡了 算法精度与运算效率之间的关系。仿真结果验证了 算法的有效性,与APML算法相比,本文所提算法 能在改善算法性能的基础上,将运行时间降为 1/91,且在信噪比为20 dB情况下,本文所提算法 测角性能可提高25.8%。

参 考 文 献

- SHAMAEI K and KASSAS Z M. A joint TOA and DOA acquisition and tracking approach for positioning with LTE signals[J]. *IEEE Transactions on Signal Processing*, 2021, 69: 2689–2705. doi: 10.1109/TSP.2021.3068920.
- [2] LONMO T I B, AUSTENG A, and HANSEN R E. Datadriven autocalibration for swath sonars[J]. *IEEE Journal of* Oceanic Engineering, 2021, 46(3): 979–987. doi: 10.1109/

JOE.2020.3036184.

- SCHMID R. Multiple emitter location and signal parameter estimation[J]. *IEEE Transactions on Antennas and Propagation*, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.
 1143830.
- [4] ROY R and KAILATH T. ESPRIT estimation of signal parameters via rotational invariance techniques[J]. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 1989, 37(7): 984–995. doi: 10.1109/29.32276.
- [5] WAX M and ADLER A. Direction of arrival estimation in the presence of model errors by signal subspace matching[J]. Signal Processing, 2021, 181: 107900. doi: 10.1016/j.sigpro. 2020.107900.
- [6] SUN Meng, WANG Yide, and PAN Jingjing. Direction of arrival estimation by a modified orthogonal propagator method with spline interpolation[J]. *IEEE Transactions on Vehicular Technology*, 2019, 68(11): 11389–11393. doi: 10. 1109/TVT.2019.2944516.
- [7] ASGHARI M, ZAREINEJAD, REZAEI S M, et al. DOA estimation of noncircular signals under impulsive noise using a novel empirical characteristic function-based MUSIC[J]. *Circuits, Systems, and Signal Processing*, 2023, 42(6): 3706–3743. doi: 10.1007/s00034-022-02289-9.
- [8] LIN Hongguang, JIN Longsheng, DING Ruixuan, et al. DOA estimation method for incoherently distributed sources based on spatial-temporal generalized ESPRIT[J]. AEU -International Journal of Electronics and Communications, 2023, 168: 154701. doi: 10.1016/j.aeue.2023.154701.
- ZHANG Wei, HAN Yong, JIN Ming, et al. An improved ESPRIT-like algorithm for coherent signals DOA estimation[J]. IEEE Communications Letters, 2020, 24(2): 339-343. doi: 10.1109/LCOMM.2019.2953851.
- [10] YANG Zai, CHEN Xinyao, and WU Xunmeng. A robust and statistically efficient maximum-likelihood method for DOA estimation using sparse linear arrays[J]. *IEEE Transactions on Aerospace and Electronic Systems*, 2023, 59(5): 6798–6812. doi: 10.1109/TAES.2023.3280894.
- [11] GAO Yumeng, LI Jianghui, BAI Yechao, et al. An improved subspace weighting method using random matrix theory[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1302–1307. doi: 10.1631/FITEE. 1900463.
- [12] CADZOW J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent sources[J]. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 1988, 36(7): 965–979. doi: 10.1109/29. 1618.
- [13] SWINDLEHURST A. Alternative algorithm for maximum likelihood DOA estimation and detection[J]. IEE Proceedings –Radar, Sonar and Navigation, 1994, 141(6):

293-299. doi: 10.1049/ip-rsn:19941366.

- [14] VIBERG M, OTTERSTEN B, and KAILATH T. Detection and estimation in sensor arrays using weighted subspace fitting[J]. *IEEE Transactions on Signal Processing*, 1991, 39(11): 2436–2449. doi: 10.1109/78.97999.
- [15] ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553-1560. doi: 10.1109/29.7543.
- [16] FU Haosheng, DAI Fengzhou, and HONG Ling. Off-grid error calibration for DOA estimation based on sparse Bayesian learning[J]. *IEEE Transactions on Vehicular Technology*, 2023, 72(12): 16293–16307. doi: 10.1109/TVT. 2023.3298965.
- [17] GUO Qijia, XIN Zhinan, ZHOU Tian, et al. Off-grid space alternating sparse Bayesian learning[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1002310. doi: 10.1109/TIM.2023.3243677.
- [18] YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. *IEEE Transactions on Signal Processing*, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378.
- [19] MA Yanan, CAO Xianbin, and WANG Xiangrong. Efficient off-grid DOA estimation based on modified MUSIC for arbitrary linear arrays[C]. Proceedings of 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5. doi: 10.1109/ICSIDP47821.2019.9173323.
- [20] 曾富红,彭占立,司伟建,等.基于双平行互质极化敏感阵列的

二维非网格DOA及极化参数估计[J]. 航空兵器, 2023, 30(3): 129-135. doi: 10.12132/ISSN.1673-5048.2022.0191.

ZENG Fuhong, PENG Zhanli, SI Weijian, *et al.* Twodimensional off-grid DOA and polarization parameter estimation for parallel coprime polarization sensitive array[J]. *Aero Weaponry*, 2023, 30(3): 129–135. doi: 10. 12132/ISSN.1673-5048.2022.0191.

[21] 揭允康,张雯,李想,等. 一种基于迭代自适应的离网格
 DOA估计方法[J]. 电子与信息学报, 2023, 45(10): 3805-3811.
 doi: 10.11999/JEIT221061.

JIE Yunkang, ZHANG Wen, LI Xiang, et al. An off-grid DOA estimation based on iterative adaptive approach[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3805–3811. doi: 10.11999/JEIT221061.

[22] 张贤达.矩阵分析与应用[M].2版.北京:清华大学出版社,
 2013:50.

ZHANG Xianda. Matrix Analysis and Applications[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 50.

- 刘 帅:男,博士,教授,研究方向为阵列信号处理、空时极化自适应信号处理、雷达电子对抗.
- 许媛媛:女,硕士生,研究方向为阵列信号处理.
- 闫锋刚: 男,博士,教授,研究方向为反辐射导引头技术、干扰与 抗干扰技术、分布式探测与感知、超分辨测量与识别、域 特征获取与处理.
- 金 铭:男,博士,教授,研究方向为雷达对抗、空间谱估计、极 化阵列信号处理.

责任编辑: 马秀强