高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种旁路机制下的低功耗片上网络功率门控设计

欧阳一鸣 陈志远 徐冬雨 梁华国

欧阳一鸣, 陈志远, 徐冬雨, 梁华国. 一种旁路机制下的低功耗片上网络功率门控设计[J]. 电子与信息学报, 2024, 46(8): 3436-3444. doi: 10.11999/JEIT231257
引用本文: 欧阳一鸣, 陈志远, 徐冬雨, 梁华国. 一种旁路机制下的低功耗片上网络功率门控设计[J]. 电子与信息学报, 2024, 46(8): 3436-3444. doi: 10.11999/JEIT231257
OUYANG Yiming, CHEN Zhiyuan, XU Dongyu, LIANG Huaguo. A Low-Power Network-on-Chip Power-Gating Design with Bypass Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3436-3444. doi: 10.11999/JEIT231257
Citation: OUYANG Yiming, CHEN Zhiyuan, XU Dongyu, LIANG Huaguo. A Low-Power Network-on-Chip Power-Gating Design with Bypass Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3436-3444. doi: 10.11999/JEIT231257

一种旁路机制下的低功耗片上网络功率门控设计

doi: 10.11999/JEIT231257
基金项目: 国家自然科学基金(62374049)
详细信息
    作者简介:

    欧阳一鸣:男,教授,研究方向为片上网络与片上系统、嵌入式系统的综合与测试、数字系统设计自动化等

    陈志远:男,硕士生,研究方向为片上网络的功率门控

    徐冬雨:男,博士生,研究方向为片上网络的可重构技术

    梁华国:男,教授,研究方向为容错计算与硬件安全、嵌入式系统综合与测试、智能控制系统等

    通讯作者:

    陈志远 czy20221002@163.com

  • 中图分类号: TP302

A Low-Power Network-on-Chip Power-Gating Design with Bypass Mechanism

Funds: The National Natural Science Foundation of China (62374049)
  • 摘要: 随着技术尺寸的缩小,静态功耗在片上网络 (NoC)的功耗开销中占据主导地位。功率门控作为一种通用的功耗节约技术,将NoC中空闲模块关闭以降低静态功耗。然而,传统的功率门控技术带来了诸如数据包唤醒延迟,盈亏平衡时间等问题。为了解决上述问题,该文提出代替功率门控路由器进行数据包传输的分区旁路传输机制 (PBTI),并基于该旁路机制设计了低延迟低功耗的功率门控方案。PBTI使用相互独立的旁路分别处理东西方向传输的数据包,并在旁路内部使用公共的缓冲区以提高缓冲区利用率。PBTI可以在路由器断电时实现数据包的注入、传输和弹出。即使网络中所有的路由器均处于功率门控状态,数据包也可以从源节点传输到目的节点。当流量增大超过PBTI的传输能力时,路由器以列为单位进行统一的唤醒。实验结果表明,与不使用功率门控的NoC相比,所提方案降低了83.4%的静态功耗和17.2%的数据包延迟,同时只额外增加了6.2%的面积开销。相较于常规的功率门控方案该文功率门控设计实现了更低的功耗和延迟,具有显著的优势。
  • 图  1  不同缓冲区深度对数据包延迟和饱和点的影响

    图  2  PBTI旁路设计

    图  3  PBTI数据包传输网络

    图  4  数据包传输3种情况

    图  5  旁路控制机制

    图  6  NI接口设计

    图  7  路由器功率门控硬件

    图  8  不同流量模式下的平均数据包延迟

    图  9  真实应用下的平均数据包延迟

    图  10  不同流量模式下的归一化静态功耗

    图  11  静态功耗和总功耗节省

    图  12  真实应用下的归一化静态功耗

    1  缓冲区平衡路由算法

     输入: destination address of the packet D, buffer available
     signals from neighboring disconnected routers Available,
     address of the local router R
     输出: the packet routing port Direction
     Begin
     1. IF((Available.E==0||Available.W==0)&&(Available.N==1)
     &&(R.y<D.y)) THEN
     2.  //using YX routing algorithm
     3.  Direction=North;
     4. ELSE
     IF((Available.E==0||Available.W==0)&&(Available.S==1)
     &&(R.y>D.y)) THEN
     5.  //using YX routing algorithm
     6.  Direction=South;
     7. ELSE
     8. //using XY routing algorithm
     9. IF(R.x<D.x) THEN
     10. Direction=East;
     11. ELSE IF(R.x>D.x) THEN Direction=Wast;
     12. ELSE IF(R.y<D.y) THEN Direction=North;
     13. ELSE IF(R.y>D.y) THEN Direction=South;
     14. ELSE Direction=Local;
     15. END IF
     16. END IF
     17. END
    下载: 导出CSV

    表  1  实验基本参数设置表

    参数 设置
    网络拓扑 8×8 Mesh
    缓冲区大小/端口 8 flits
    虚通道数量/端口 2
    数据包大小 2~6 flits
    路由算法 XY,缓冲区平衡路由算法
    传输链路宽度 32 bits
    路由器频率 1 GHz
    流量模式 均匀随机,转置,洗牌
    路由器唤醒延迟 8 cycles
    盈亏平衡时间 10 cycles
    路由器断电等待时间 4 cycles
    下载: 导出CSV
  • [1] MONEMI A, PÉREZ I, LEYVA N, et al. PlugSMART: A pluggable open-source module to implement multihop bypass in networks-on-chip[C]. The 15th IEEE/ACM International Symposium on Networks-on-Chip, Madison, USA, 2021: 41–48.
    [2] SUN Chenglong, OUYANG Yiming, and LU Yingchun. DCBuf: A high-performance wireless network-on-chip architecture with distributed wireless interconnects and centralized buffer sharing[J]. Wireless Networks, 2022, 28(2): 505–520. doi: 10.1007/s11276-021-02882-x.
    [3] OUYANG Yiming, XU Dongyu, CHEN Zhimou, et al. REE: Reconfigurable and energy-efficient router architecture in wireless network-on-chip[J]. Microelectronics Journal, 2022, 129: 105600. doi: 10.1016/j.mejo.2022.105600.
    [4] CHEN Hui, CHEN Peng, ZHOU Jun, et al. ArSMART: An improved SMART NoC design supporting arbitrary-turn transmission[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(5): 1316–1329. doi: 10.1109/TCAD.2021.3091961.
    [5] SUN Chenglong, OUYANG Yiming, and LIANG Huaguo. Architecting a congestion pre-avoidance and load-balanced wireless network-on-chip[J]. Journal of Parallel and Distributed Computing, 2022, 161: 143–154. doi: 10.1016/j.jpdc.2021.12.003.
    [6] DAYA B K, CHEN C H O, SUBRAMANIAN S, et al. SCORPIO: A 36-core research chip demonstrating snoopy coherence on a scalable mesh NoC with in-network ordering[J]. ACM SIGARCH Computer Architecture News, 2014, 42(3): 25–36. doi: 10.1145/2678373.2665680.
    [7] KIM J S, TAYLOR M B, MILLER J, et al. Energy characterization of a tiled architecture processor with on-chip networks[C]. 2003 International Symposium on Low Power Electronics and Design, Seoul, Korea (South), 2003: 424–427. doi: 10.1109/LPE.2003.1231942.
    [8] WOO S C, OHARA M, TORRIE E, et al. The SPLASH-2 programs: Characterization and methodological considerations[J]. ACM SIGARCH Computer Architecture News, 1995, 23(2): 24–36. doi: 10.1145/225830.223990.
    [9] FARROKHBAKHT H, KAMALI H M, and HESSABI S. SMART: A scalable mapping and routing technique for power-gating in NoC routers[C]. 2017 Eleventh IEEE/ACM International Symposium on Networks-on-Chip, Seoul, Korea (South), 2017: 1–8.
    [10] ZHOU Wu, OUYANG Yiming, LI Jianhua, et al. A transparent virtual channel power gating method for on-chip network routers[J]. Integration, 2023, 88: 286–297. doi: 10.1016/j.vlsi.2022.10.004.
    [11] SAMIH A, WANG Ren, KRISHNA A, et al. Energy-efficient interconnect via Router Parking[C]. 2013 IEEE 19th International Symposium on High Performance Computer Architecture, Shenzhen, China, 2013: 508–519. doi: 10.1109/HPCA.2013.6522345.
    [12] WANG Peng, NIKNAM S, WANG Zhiying, et al. A novel approach to reduce packet latency increase caused by power gating in network-on-chip[C]. 2017 Eleventh IEEE/ACM International Symposium on Networks-on-Chip, Seoul, Korea (South), 2017: 1–8.
    [13] XU Dongyu, OUYANG Yiming, ZHOU Wu, et al. Improving power and performance of on-chip network through virtual channel sharing and power gating[J]. Integration, 2023, 93: 102059. doi: 10.1016/j.vlsi.2023.102059.
    [14] CHEN Lizhong and PINKSTON T M. NoRD: Node-router decoupling for effective power-gating of on-chip routers[C]. 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, Vancouver, Canada, 2012: 270–281. doi: 10.1109/MICRO.2012.33.
    [15] FARROKHBAKHT H, TARAM M, KHALEGHI B, et al. TooT: An efficient and scalable power-gating method for NoC routers[C]. 2016 Tenth IEEE/ACM International Symposium on Networks-on-Chip, Nara, Japan, 2016: 1–8. doi: 10.1109/NOCS.2016.7579326.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  51
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2024-04-23
  • 网络出版日期:  2024-05-13
  • 刊出日期:  2024-08-10

目录

    /

    返回文章
    返回