高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度音频Sigma-Delta调制器综述

孙奥运 温培旭 邵淮先 王桉楠 鲁毅 章飚 曾永红 张章

孙奥运, 温培旭, 邵淮先, 王桉楠, 鲁毅, 章飚, 曾永红, 张章. 高精度音频Sigma-Delta调制器综述[J]. 电子与信息学报, 2024, 46(5): 1874-1887. doi: 10.11999/JEIT231208
引用本文: 孙奥运, 温培旭, 邵淮先, 王桉楠, 鲁毅, 章飚, 曾永红, 张章. 高精度音频Sigma-Delta调制器综述[J]. 电子与信息学报, 2024, 46(5): 1874-1887. doi: 10.11999/JEIT231208
SUN Aoyun, WEN Peixu, SHAO Huaixian, WANG Annan, LU Yi, ZHANG Biao, ZENG Yonghong, ZHANG Zhang. A Review of High-Resolution Audio Sigma-Delta Modulator[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1874-1887. doi: 10.11999/JEIT231208
Citation: SUN Aoyun, WEN Peixu, SHAO Huaixian, WANG Annan, LU Yi, ZHANG Biao, ZENG Yonghong, ZHANG Zhang. A Review of High-Resolution Audio Sigma-Delta Modulator[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1874-1887. doi: 10.11999/JEIT231208

高精度音频Sigma-Delta调制器综述

doi: 10.11999/JEIT231208
基金项目: 国家自然科学基金(U19A2053),安徽省自然科学基金(2308085MF207),模拟集成电路国家重点实验室开放课题(JCKY2022210C001)
详细信息
    作者简介:

    孙奥运:男,博士生,研究方向为高精度模数转换器设计

    温培旭:男,硕士生,研究方向为高精度模数转换器设计

    邵淮先:男,硕士生,研究方向为混合信号芯片设计

    王桉楠:男,博士生,研究方向为混合信号芯片设计

    张章:男,教授,研究方向为混合信号芯片设计

    通讯作者:

    张章 zhangzhang@hfut.edu.cn

  • 中图分类号: TN45

A Review of High-Resolution Audio Sigma-Delta Modulator

Funds: The National Natural Science Foundation of China (U19A2053), The Natural Science Foundation of Anhui Province (2308085MF207), The National Laboratory of Science and Technology on Analog Integrated Circuit (JCKY2022210C001)
  • 摘要: Sigma-Delta(Σ-Δ)模数转换器(ADC)基于过采样和噪声整形技术,可实现高分辨率,具有无源器件匹配性要求低、结构简单等特点。在高精度音频领域,Σ-Δ ADC能够实现高动态范围和良好的功率效率得到了广泛的关注和应用。近年来,依托先进工艺、先进技术进行低功耗高精度的音频ADC的设计已经成为新的研究热点。然而随着工艺技术向低节点的持续发展、电源电压的不断降低,使得Σ-Δ ADC的电路设计更具挑战性。该文对高精度音频Sigma-Delta调制器的离散型设计、连续型设计的研究现状进行综述,为高精度音频Sigma-Delta调制器设计提供理论支撑,并给出研究前景展望。
  • 图  1  离散型调制器示意图

    图  2  开关电容积分器

    图  3  积分器中的放大器拓扑架构

    图  4  基于动态运放和基于反相器的积分器示意图

    图  5  闪速量化器和SAR量化器示意图

    图  6  使用DEM算法的反馈DAC架构

    图  7  VCO作为相位积分器的经典模型

    图  8  基于计数器的VCO量化器

    图  9  FIR DAC技术的反馈DAC架构

    表  1  Sigma-Delta ADC中DAC不匹配误差的数字校准总结

    伪数据加权平均[56]数据加权平均[58]比较数据加权平均[59]
    特点适合于低比特量化,音调行为
    相对于DWA有所下降
    结构简单,具备1阶噪声整形能力,
    OSR较低时有较大的谐波,有固定音调存在
    具有2阶噪声整形,能够有效抑制谐波,
    没有明显音调行为
    下载: 导出CSV
  • [1] INOSE H, YASUDA Y, and MURAKAMI J. A telemetering system by code modulation Δ-Σ modulation[J]. IRE Transactions on Space Electronics and Telemetry, 1962, SET-8(3): 204–209. doi: 10.1109/IRET-SET.1962.5008839.
    [2] 郝志刚, 杨海钢, 张翀, 等. 一种改进的适用于Sigma-Delta ADC的数字抽取滤波器[J]. 电子与信息学报, 2010, 32(4): 1012–1016. doi: 10.3724/SP.J.1146.2009.00247.

    HAO Zhigang, YANG Haigang, ZHANG Chong, et al. An improved digital decimation filter for Sigma-Delta ADC[J]. Journal of Electronics & Information Technology, 2010, 32(4): 1012–1016. doi: 10.3724/SP.J.1146.2009.00247.
    [3] KUMAR R S A and KRISHNAPURA N. Multi-channel analog-to-digital conversion using a delta-sigma modulator without reset and a modulated-sinc-sum filter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(1): 186–195. doi: 10.1109/TCSI.2021.3094679.
    [4] SAEED M A, KUMAR M, UMAPATHI B, et al. Optimization of slew mitigation capacitor in passive charge compensation-based delta-sigma modulator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(6): 1821–1825. doi: 10.1109/TCSII.2023.3234909.
    [5] PARK H, NAM K Y, SU D K, et al. A 0.7-V 870-μW digital-audio CMOS sigma-delta modulator[J]. IEEE Journal of Solid-State Circuits, 2009, 44(4): 1078–1088. doi: 10.1109/JSSC.2009.2014708.
    [6] WANG Yanchao, DEY S, HE Tao, et al. A hybrid continuous-time incremental and SAR two-step ADC with 90.5-dB DR over 1-MHz BW[J]. IEEE Solid-State Circuits Letters, 2022, 5: 122–125. doi: 10.1109/LSSC.2022.3172395.
    [7] LIU Qilong, BREEMS L J, BAJORIA S, et al. A 158-mW 360-MHz BW 68-dB DR continuous-time 1-1-1 filtering MASH ADC in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2022, 57(12): 3781–3793. doi: 10.1109/JSSC.2022.3204871.
    [8] DALLA LONGA M, CONZATTI F, HOFMANN T, et al. An intrinsically linear 13-level capacitive DAC for delta sigma modulators[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(4): 1291–1295. doi: 10.1109/TCSII.2022.3224878.
    [9] MENG Lingxin, CHEN Junsheng, ZHAO Menglian, et al. An 18.2μW 101.1dB DR fully-dynamic ΔΣ ADC with partially-feedback noise-shaping quantizer and CLS-embedded two-stage FIAs[C]. 2023-IEEE 49th European Solid State Circuits Conference, Lisbon, Portugal, 2023: 393–396. doi: 10.1109/ESSCIRC59616.2023.10268800.
    [10] WANG Hetong, ZHENG Zhongxu, and PUN K P. A 13-level SC DAC achieving high linearity with a simple DEM for wideband CT DSMs[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(8): 2754–2758. doi: 10.1109/TCSII.2023.3246031.
    [11] TAN Dayong, ZOU Yang, ZHONG Linsheng, et al. A novel structure optimizer based on heuristic search for delta-sigma modulator in mobile fronthaul[J]. IEEE Photonics Technology Letters, 2022, 34(21): 1131–1134. doi: 10.1109/LPT.2022.3204605.
    [12] 段权珍, 谢鹏, 孟真, 等. 一种开关电容过采样delta-sigma调制器电路[P]. 中国, 112187281A, 2021.

    DUAN Quanzhen, XIE Peng, MENG Zhen, et al. Switched capacitor oversampling delta-sigma modulator circuit[P]. CN, 112187281A, 2021.
    [13] KIM J, SHIN H, NA S, et al. A 860.8-nW low-power continuous-time delta-sigma modulator with switched resistors for sensor applications[C]. 2023 IEEE International Symposium on Circuits and Systems, Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10181932.
    [14] SOMAPPA L and BAGHINI M S. Continuous-time hybrid ΔΣ modulators for sub-μW power multichannel biomedical applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(4): 406–417. doi: 10.1109/TVLSI.2022.3140222.
    [15] MOKHTAR M A, ABDELAAL A, SPORER M, et al. A 0.9-V DAC-calibration-free continuous-time incremental delta–sigma modulator achieving 97-dB SFDR at 2 MS/s in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11): 3407–3417. doi: 10.1109/JSSC.2022.3160325.
    [16] KIM M G, AHN G C, HANUMOLU P K, et al. A 0.9 V 92 dB double-sampled switched-RC delta-sigma audio ADC[J]. IEEE Journal of Solid-State Circuits, 2008, 43(5): 1195–1206. doi: 10.1109/JSSC.2008.920329.
    [17] PAVAN S, SCHREIER R, and TEMES G C. Understanding Delta-Sigma Data Converters[M]. 2nd ed. Hoboken: John Wiley & Sons, 2017: 39–50. doi: 10.1002/9781119258308.
    [18] MOUNIKA P, PU Y G, and LEE K Y. A 1.4mW sigma delta ADC with configurable filter for sensor applications[C]. 2023 Fourteenth International Conference on Ubiquitous and Future Networks, Paris, France, 2023: 697–699. doi: 10.1109/ICUFN57995.2023.10200609.
    [19] LEE S, JO W, SONG S, et al. A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63(11): 1866–1875. doi: 10.1109/TCSI.2016.2598734.
    [20] MA Song, LIU Liyuan, FANG Tong, et al. A discrete-time audio ΔΣ modulator using dynamic amplifier with speed enhancement and flicker noise reduction techniques[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 333–343. doi: 10.1109/JSSC.2019.2941540.
    [21] SHIM J, HONG S K, and KWON O K. A low-power second-order double-sampling delta-sigma modulator for audio applications[C]. The 18th IEEE International Symposium on Consumer Electronics, Jeju, Korea (South), 2014: 1–2. doi: 10.1109/ISCE.2014.6884465.
    [22] WANG Yongsheng, JI Houchen, WANG Hongyin, et al. 116dB SFDR delta-sigma modulator with a novel GM-boost OPAMP for audio application[C]. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, 2014: 1–3. doi: 10.1109/ICSICT.2014.7021198.
    [23] ZHANG Beichen, DOU Runjiang, LIU Liyuan, et al. A 91.2dB SNDR 66.2fJ/conv. dynamic amplifier based 24kHz ΔΣ modulator[C]. 2016 IEEE Asian Solid-State Circuits Conference, Toyama, Japan, 2016: 317–320. doi: 10.1109/ASSCC.2016.7844199.
    [24] CHAE Y and HAN G. Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2009, 44(2): 458–472. doi: 10.1109/JSSC.2008.2010973.
    [25] LUO Hao, HAN Yan, CHEUNG R C C, et al. A 0.8-V 230-μW 98-dB DR inverter-based ΔΣ modulator for audio applications[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10): 2430–2441. doi: 10.1109/JSSC.2013.2275659.
    [26] CHRISTEN T. A 15-bit 140-μW scalable-bandwidth inverter-based ΔΣ modulator for a MEMS microphone with digital output[J]. IEEE Journal of Solid-State Circuits, 2013, 48(7): 1605–1614. doi: 10.1109/JSSC.2013.2253232.
    [27] MICHEL F and STEYAERT M S J. A 250 mV 7.5 μW 61 dB SNDR SC ΔΣ modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3): 709–721. doi: 10.1109/JSSC.2011.2179732.
    [28] STEINER M and GREER N. 15.8 A 22.3b 1kHz 12.7mW switched-capacitor ΔΣ modulator with stacked split-steering amplifiers[C]. 2016 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2016: 284–286. doi: 10.1109/ISSCC.2016.7418018.
    [29] 刘术彬, 沈愉轲, 韩昊霖, 等. 一种24位低失真Sigma-Delta模数转换器[P]. 中国, 113315522B, 2023.

    LIU Shubin, SHEN Yuke, HAN Haolin, et al. 24-bit low-distortion Sigma-Delta analog-to-digital converter[P]. CN, 113315522B, 2023.
    [30] 顾昊然. 高性能Sigma-Delta调制器的设计与研究[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.004361.

    GU Haoran. Research and design of high performance sigma-delta modulator[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.004361.
    [31] BONCU M, PANA S, DRAGHICI F, et al. A second order discrete-time ΔA analog to digital converter for audio applications[C]. 2022 International Semiconductor Conference (CAS), Poiana Brasov, Romania, 2022: 209–212. doi: 10.1109/CAS56377.2022.9934665.
    [32] KANG K, ROH J, CHOI Y, et al. Class-D audio amplifier using 1-bit fourth-order delta-sigma modulation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(8): 728–732. doi: 10.1109/TCSII.2008.922457.
    [33] FUJIMOTO Y, RE P L, and MIYAMOTO M. A delta-sigma modulator for a 1-bit digital switching amplifier[J]. IEEE Journal of Solid-State Circuits, 2005, 40(9): 1865–1871. doi: 10.1109/JSSC.2005.848145.
    [34] VARONA J, VELAZQUEZ R, and TORRES M T. Design of baseband digital delta-sigma modulators in 180nm CMOS[J]. IEEE Latin America Transactions, 2015, 13(5): 1272–1278. doi: 10.1109/TLA.2015.7111979.
    [35] AHN G C, CHANG D Y, BROWN M E, et al. A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2398–2407. doi: 10.1109/JSSC.2005.856286.
    [36] YANG Yuqing, SCULLEY T, and ABRAHAM J. A single-die 124 dB stereo audio delta-sigma ADC with 111 dB THD[J]. IEEE Journal of Solid-State Circuits, 2008, 43(7): 1657–1665. doi: 10.1109/JSSC.2008.923731.
    [37] LIU Liyuan, LI Dongmei, CHEN Liangdong, et al. A 1-V 15-bit audio ΔΣ-ADC in 0.18 μm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(5): 915–925. doi: 10.1109/TCSI.2012.2188949.
    [38] CHO J S, RHEE J, KIM S, et al. A 1.2-V 108.9-dB A-weighted DR 101.4-dB SNDR audio ΔΣ ADC using a multi-rate noise-shaping quantizer[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(10): 1315–1319. doi: 10.1109/TCSII.2018.2853189.
    [39] GARVI R and PREFASI E. A novel multi-bit sigma-delta modulator using an integrating SAR noise-shaped quantizer[C]. 2018 25th IEEE International Conference on Electronics, Circuits and Systems, Bordeaux, France, 2018: 809–812. doi: 10.1109/ICECS.2018.8617956.
    [40] YAGHOUBI M, SABERI M, and LOTFI R. A 0.7-V 400-μW 16-bit audio sigma-delta modulator with a modified tracking quantizer[C]. 2016 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 2016: 1336–1341. doi: 10.1109/IranianCEE.2016.7585728.
    [41] WANG Zhengyu, ZHENG T H, LU Dongtian, et al. Configurable incremental sigma-delta ADC for DC measure and audio conversion[C]. 2014 Custom Integrated Circuits Conference, San Jose, USA, 2014: 1–4. doi: 10.1109/CICC.2014.6946081.
    [42] EL-CHAMMAS M and MURMANN B. A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration[J]. IEEE Journal of Solid-State Circuits, 2011, 46(4): 838–847. doi: 10.1109/JSSC.2011.2108125.
    [43] RAZAVI B. The StrongARM latch [a circuit for all seasons][J]. IEEE Solid-State Circuits Magazine, 2015, 7(2): 12–17. doi: 10.1109/MSSC.2015.2418155.
    [44] TANG Xiyuan, LIU Jiaxin, SHEN Yi, et al. Low-power SAR ADC design: Overview and survey of state-of-the-art techniques[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2249–2262. doi: 10.1109/TCSI.2022.3166792.
    [45] WOO S and CHO J K. A switched-capacitor filter with reduced sensitivity to reference noise for audio-band sigma–delta D/A converters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63(4): 361–365. doi: 10.1109/TCSII.2015.2503714.
    [46] QURESHI W A, SALIMATH A, BOTTI E, et al. An incremental-ΔΣ ADC with 106-dB DR for reconfigurable Class-D audio amplifiers[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 929–933. doi: 10.1109/TCSII.2021.3130426.
    [47] YANG Zhenglin, YAO Libin, and LIAN Yong. A 0.5-V 35-μW 85-dB DR double-sampled ΔΣ modulator for audio applications[J]. IEEE Journal of Solid-State Circuits, 2012, 47(3): 722–735. doi: 10.1109/JSSC.2011.2181677.
    [48] LEE K, MENG Qingdong, SUGIMOTO T, et al. A 0.8 V, 2.6 mW, 88 dB dual-channel audio delta-sigma D/A converter with headphone driver[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 916–927. doi: 10.1109/JSSC.2008.2012362.
    [49] LIU Yuyu, GAO Jun, and YANG Xiaodong. 24-bit low-power low-cost digital audio sigma-delta DAC[J]. Tsinghua Science and Technology, 2011, 16(1): 74–82. doi: 10.1016/S1007-0214(11)70012-8.
    [50] THIRUNAKKARASU S and BAKKALOGLU B. Built-in self-calibration and digital-trim technique for 14-bit SAR ADCs achieving ±1 LSB INL[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23(5): 916–925. doi: 10.1109/TVLSI.2014.2321761.
    [51] NASIRI H, LI Cheng, and ZHANG Lihong. Ultra-low power SAR ADC using statistical characteristics of low-activity signals[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(9): 1319–1331. doi: 10.1109/TVLSI.2022.3187659.
    [52] JABBOUR C, FAKHOURY H, NGUYEN V T, et al. Delay-reduction technique for DWA algorithms[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61(10): 733–737. doi: 10.1109/TCSII.2014.2335437.
    [53] 曹天霖. 高性能带通∑△模数转换器芯片研究与实现[D]. [博士论文], 浙江大学, 2017: 51–55.

    CAO Tianlin. A high-performance band-pass sigma delta analog-to-digital converter[D]. [Ph. D. dissertation], Zhejiang University, 2017: 51–55.
    [54] ROYCHOWDHURY S and SEN S. Verilog modeling of 24 bit stereo DAC using multibit SDM[C]. 2020 IEEE VLSI Device Circuit and System, Kolkata, India, 2020: 1–6. doi: 10.1109/VLSIDCS47293.2020.9179880.
    [55] RISBO L, HEZAR R, KELLECI B, et al. Digital approaches to ISI-mitigation in high-resolution oversampled multi-level D/A converters[J]. IEEE Journal of Solid-State Circuits, 2011, 46(12): 2892–2903. doi: 10.1109/JSSC.2011.2164965.
    [56] HUANG Zhongyi, ZHAO Menglian, YANG Xiaolin, et al. A 3.86mW 106.4dB SNDR delta-sigma modulator based on switched-opamp for audio codec[C]. 2014 IEEE 57th International Midwest Symposium on Circuits and Systems, College Station, USA, 2014: 761–764. doi: 10.1109/MWSCAS.2014.6908526.
    [57] GEORGE S S, SONG Yu, and IGNJATOVIC Z. A 94-dB SFDR multi-bit audio-band delta-sigma converter with DAC nonlinearity suppression[C]. 2015 IEEE International Symposium on Circuits and Systems, Lisbon, Portugal, 2015: 2041–2044. doi: 10.1109/ISCAS.2015.7169078.
    [58] TANG Yuxiang, CHEN Xiaofei, and ZHU Hongbo. A 108-dB SNDR 2–1 MASH ΔΣ modulator with first-stage multibit for audio application[C]. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems, Shanghai, China, 2018: 336–340. doi: 10.1109/ICAM.2018.8596380.
    [59] CHEN Chengying and ZHANG Feng. A 1-V, 82-dB SNR analog front-end with peak-statistics and comparative-DWA algorithm[C]. 2019 IEEE International Symposium on Circuits and Systems, Sapporo, Japan, 2019: 1–4. doi: 10.1109/ISCAS.2019.8702486.
    [60] WANG T C, LIN Y H, and LIU Chuncheng. A 0.022 mm2 98.5 dB SNDR hybrid audio ΔΣ modulator with digital ELD compensation in 28 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2015, 50(11): 2655–2664. doi: 10.1109/JSSC.2015.2453953.
    [61] LOZADA K E, JANG I H, BAE G J, et al. A 4th-order continuous-time delta-sigma modulator with hybrid noise-coupling[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(9): 3635–3639. doi: 10.1109/TCSII.2022.3182406.
    [62] 吴凯凯, 王红义, 陈晨, 等. 环路延迟补偿电路及Sigma-Delta模数转换器[P]. 中国, 113328754B, 2022.

    WU Kaikai, WANG Hongyi, CHEN Chen, et al. Loop delay compensation circuit and Sigma-Delta analog-to-digital converter[P]. CN, 113328754B, 2022.
    [63] DRIEMEYER B, MANDRY H, WIENS D P, et al. PUF-entropy extraction of DAC intersymbol-interference using continuous-time delta-sigma ADCs[C]. 2022 29th IEEE International Conference on Electronics, Circuits and Systems, Glasgow, United Kingdom, 2022: 1–4. doi: 10.1109/ICECS202256217.2022.9971072.
    [64] PAVAN S, KRISHNAPURA N, PANDARINATHAN R, et al. A power optimized continuous-time ΔΣ ADC for audio applications[J]. IEEE Journal of Solid-State Circuits, 2008, 43(2): 351–360. doi: 10.1109/JSSC.2007.914263.
    [65] WAGNER J, MOKHTAR M A, and ORTMANNS M. Automated design of sigma-delta modulators with FIR feedback[C]. 2022 IEEE International Symposium on Circuits and Systems, Austin, USA, 2022: 571–575. doi: 10.1109/ISCAS48785.2022.9937222.
    [66] ZHU Shengling, CHEN Lei, and SU Jie. Digital calibration technique based AC injection for continuous-time sigma-delta converters[J]. Electronics Letters, 2023, 59(19): e12960. doi: 10.1049/ell2.12960.
    [67] ZHANG Hao, SHEN Linxiao, ZHANG Shichuang, et al. A 77μW 115dB-Dynamic-range 586fA-sensitivity current-domain continuous-time zoom ADC with pulse-width-modulated resistor DAC and background offset compensation scheme[C]. 2022 IEEE Custom Integrated Circuits Conference, Newport Beach, USA, 2022: 1–2. doi: 10.1109/CICC53496.2022.9772794.
    [68] DE BERTI C, MALCOVATI P, CRESPI L, et al. A 106 dB a-weighted DR low-power continuous-time ΣΔ modulator for MEMS microphones[J]. IEEE Journal of Solid-State Circuits, 2016, 51(7): 1607–1618. doi: 10.1109/JSSC.2016.2540811.
    [69] CHAE Y. Low-power continuous-time delta-sigma ADCs[C]. 2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, China, 2022: 1. doi: 10.1109/VLSI-DAT54769.2022.9768088.
    [70] BAL A, GUPTA S, and SINGH R. A real time multi-bit DAC mismatch estimation & correction technique for wideband continuous time sigma delta modulators[C]. 2022 35th International Conference on VLSI Design and 21st International Conference on Embedded Systems, Bangalore, India, 2022: 39–43. doi: 10.1109/VLSID2022.2022.00020.
    [71] LIU Huaiyu, GUO Tongtong, YAN Peng, et al. A hybrid 1st/2nd-order VCO-based CTDSM with rail-to-rail artifact tolerance for bidirectional neural interface[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(6): 2682–2686. doi: 10.1109/TCSII.2022.3153786.
    [72] LIU Huaiyu, QI Liang, WANG Guoxing, et al. A VCO-based CTDSM with integrated phase error correction for neural interface[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(10): 4018–4022. doi: 10.1109/TCSII.2022.3186788.
    [73] ZHONG Yi and SUN Nan. A survey of voltage-controlled-oscillator-based ΔΣ ADCs[J]. Tsinghua Science and Technology, 2022, 27(3): 472–480. doi: 10.26599/TST.2021.9010037.
    [74] POCHET C and HALL D A. A pseudo-virtual ground feedforwarding technique enabling linearization and higher order noise shaping in VCO-based ΔΣ modulators[J]. IEEE Journal of Solid-State Circuits, 2022, 57(12): 3746–3756. doi: 10.1109/JSSC.2022.3202040.
    [75] PARK J H, CHA J H, PARK Y, et al. A VCO-based 2nd-order Δ2–ΔΣ modulator for small-size high energy-efficient current sensing front-end[J]. IEEE Solid-State Circuits Letters, 2023, 6: 93–96. doi: 10.1109/LSSC.2023.3264499.
    [76] GUO Yuekang, JIN Jing, LIU Xiaoming, et al. An 18.1 mW 50 MHz-BW 76.4 dB-SNDR CTSDM with PVT-robust VCO quantizer and latency-free background-calibrated DAC[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(12): 4787–4798. doi: 10.1109/TCSI.2022.3192465.
    [77] JANG M, LEE C, and CHAE Y. A 134-μW 99.4-dB SNDR audio continuous-time delta-sigma modulator with chopped negative-R and tri-level FIR-DAC[J]. IEEE Journal of Solid-State Circuits, 2021, 56(6): 1761–1771. doi: 10.1109/JSSC.2020.3032152.
    [78] BILLA S, SUKUMARAN A, and PAVAN S. Analysis and design of continuous-time delta–sigma converters incorporating chopping[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2350–2361. doi: 10.1109/JSSC.2017.2717937.
    [79] ZHANG Jinghua, LIAN Yong, YAO Libin, et al. A 0.6-V 82-dB 28.6- μW continuous-time audio delta-sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2011, 46(10): 2326–2335. doi: 10.1109/JSSC.2011.2161212.
    [80] PAVAN S and SANKAR P. Power reduction in continuous-time delta-sigma modulators using the assisted opamp technique[J]. IEEE Journal of Solid-State Circuits, 2010, 45(7): 1365–1379. doi: 10.1109/JSSC.2010.2048082.
    [81] DONIDA A, CELLIER R, NAGARI A, et al. A 40-nm CMOS, 1.1-V, 101-dB dynamic-range, 1.7-mW continuous-time ΣΔ ADC for a digital closed-loop Class-D amplifier[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(3): 645–653. doi: 10.1109/TCSI.2014.2373971.
    [82] AHMED I, CHERRY J, HASAN A, et al. A low-power Gm-C-based CT-ΔΣ audio-band ADC in 1.1V 65nm CMOS[C]. 2015 Symposium on VLSI Circuits, Kyoto, Japan, 2015: C294–C295. doi: 10.1109/VLSIC.2015.7231296.
    [83] LEE K, YOON Y, and SUN Nan. A scaling-friendly low-power small-area ΔΣ ADC with VCO-based integrator and intrinsic mismatch shaping capability[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5(4): 561–573. doi: 10.1109/JETCAS.2015.2502166.
    [84] CARDES F, GUTIERREZ E, QUINTERO A, et al. 0.04-mm2 103-dB-A dynamic range second-order VCO-based audio ΣΔ ADC in 0.13- µm CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(6): 1731–1742. doi: 10.1109/JSSC.2018.2799938.
    [85] ZHONG Yi, LI Shaolan, SANYAL A, et al. A second-order purely VCO-based CT ΔΣ ADC using a modified DPLL in 40-nm CMOS[C]. 2018 IEEE Asian Solid-State Circuits Conference, Tainan, China, 2018: 93–94. doi: 10.1109/ASSCC.2018.8579255.
    [86] MAGHAMI H, PAYANDEHNIA P, MIRZAIE H, et al. A highly linear OTA-less 1-1 MASH VCO-based ΔΣ ADC with an efficient phase quantization noise extraction technique[J]. IEEE Journal of Solid-State Circuits, 2020, 55(3): 706–718. doi: 10.1109/JSSC.2019.2954764.
    [87] PEREZ C, GARVI R, LOPEZ G, et al. A VCO-based ADC with direct connection to a microphone MEMS, 80-dB peak SNDR and 438-μW power consumption[J]. IEEE Sensors Journal, 2023, 23(8): 8466–8477. doi: 10.1109/JSEN.2023.3244663.
    [88] GARVI R, GRANIZO J, GUTIERREZ E, et al. A VCO-ADC linearized by a capacitive frequency-to-current converter[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(6): 1841–1845. doi: 10.1109/TCSII.2023.3236760.
    [89] GARVI R, ALVERO-GONZALEZ L M, PEREZ C, et al. VCO-ADC linearization by switched capacitor frequency-to-current conversion[C]. 2020 IEEE International Symposium on Circuits and Systems, Seville, Spain, 2020: 1–5. doi: 10.1109/ISCAS45731.2020.9180397.
    [90] THEERTHAM R, GANTA S N, and PAVAN S. Design of high-resolution continuous-time delta–sigma data converters with dual return-to-open DACs[J]. IEEE Journal of Solid-State Circuits, 2022, 57(11): 3418–3428. doi: 10.1109/JSSC.2022.3176876.
    [91] ZHANG Yang, BASAK D, and PUN K P. Power-efficient Gm-C DSMs with high immunity to aliasing, clock jitter, and ISI[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(2): 337–349. doi: 10.1109/TVLSI.2018.2874259.
    [92] FELDING H, HELLMAN L, TAN Siyu, et al. A three bit second order audio band delta sigma modulator with 98.2dB SQNR[C]. 2016 International Symposium on Integrated Circuits, Singapore, 2016: 1–4. doi: 10.1109/ISICIR.2016.7829750.
    [93] LIN Jiani, CHU H C, CHEN Zongyi, et al. A continuous-time delta-sigma modulator with novel data-weighted averaging algorithm for audio application[C]. 2015 IEEE International Conference on Electron Devices and Solid-State Circuits, Singapore, 2015: 281–284. doi: 10.1109/EDSSC.2015.7285105.
    [94] IWATA A, SAKIMURA N, NAGATA M, et al. An architecture of delta-sigma A-to-D converters using a voltage controlled oscillator as a multi-bit quantizer[C]. 1998 IEEE International Symposium on Circuits and Systems, Monterey, USA, 1998, 1: 389–392. doi: 10.1109/ISCAS.1998.704448.
    [95] STRAAYER M Z and PERROTT M H. A 10-bit 20MHz 38mW 950MHz CT ΣΔ ADC with a 5-bit noise-shaping VCO-based Quantizer and DEM circuit in 0.13u CMOS[C]. 2007 IEEE Symposium on VLSI Circuits, Kyoto, Japan, 2007: 246–247. doi: 10.1109/VLSIC.2007.4342737.
    [96] LEOW Y H, TANG H, SUN Zhuochao, et al. A 1 V 103 dB 3rd-Order audio continuous-time ΔΣ ADC with enhanced noise shaping in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2016, 51(11): 2625–2638. doi: 10.1109/JSSC.2016.2593777.
    [97] NGUYEN K, ADAMS R, SWEETLAND K, et al. A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio[J]. IEEE Journal of Solid-State Circuits, 2005, 40(12): 2408–2415. doi: 10.1109/JSSC.2005.856284.
    [98] MATAMURA A, NISHIMURA N, BIRDSONG P, et al. An 82-mW ΔΣ-based filter-less Class-D headphone amplifier with −93-dB THD+N, 113-dB SNR, and 93% efficiency[J]. IEEE Journal of Solid-State Circuits, 2021, 56(12): 3573–3582. doi: 10.1109/JSSC.2021.3100548.
    [99] LO C, LEE J, LIM Y, et al. 10.1 A 116μW 104.4dB-DR 100.6dB-SNDR CT ΔΣ audio ADC using tri-level current-steering DAC with gate-leakage compensated off-transistor-based bias noise filter[C]. 2021 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2021: 164–166. doi: 10.1109/ISSCC42613.2021.9365807.
    [100] MARKER-VILLUMSEN N, JØRGENSEN I H H, and BRUUN E. Low power continuous-time delta-sigma ADC with current output DAC[C]. 2015 European Conference on Circuit Theory and Design, Trondheim, Norway, 2015: 1–4. doi: 10.1109/ECCTD.2015.7300096.
    [101] JIANG Xicheng, SONG J, CHEN Jianlong, et al. A low-power, high-fidelity stereo audio codec in 0.13 μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2012, 47(5): 1221–1231. doi: 10.1109/JSSC.2012.2185591.
    [102] NGUYEN K, BANDYOPADHYAY A, ADAMS B, et al. A 108 dB SNR, 1.1 mW oversampling audio DAC with a three-level DEM technique[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2592–2600. doi: 10.1109/JSSC.2008.2006314.
    [103] SUKUMARAN A and PAVAN S. Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback[J]. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2515–2525. doi: 10.1109/JSSC.2014.2332885.
    [104] BILLA S, DIXIT S, and PAVAN S. Analysis and design of an audio continuous-time 1-X FIR-MASH delta–sigma modulator[J]. IEEE Journal of Solid-State Circuits, 2020, 55(10): 2649–2659. doi: 10.1109/JSSC.2020.2992891.
    [105] ORNA M, MORCHE D, BASCHIROTTO A, et al. Quantitative jitter simulations and FIR-DAC sizing for single-bit continuous time sigma delta modulators[C]. 2021 IEEE 12th Latin America Symposium on Circuits and System, Arequipa, Peru, 2021: 1–4. doi: 10.1109/LASCAS51355.2021.9459118.
    [106] SCHINKEL D, GROOTHEDDE W, MOSTERT F, et al. A multiphase Class-D automotive audio amplifier with integrated low-latency ADCs for digitized feedback after the output filter[J]. IEEE Journal of Solid-State Circuits, 2017, 52(12): 3181–3193. doi: 10.1109/JSSC.2017.2731812.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  242
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2024-04-23
  • 网络出版日期:  2024-05-11
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回