高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多无人机输电线路巡检联合轨迹设计方法

高云飞 胡钰林 刘鸣柳 黄雨茜 孙鹏

高云飞, 胡钰林, 刘鸣柳, 黄雨茜, 孙鹏. 多无人机输电线路巡检联合轨迹设计方法[J]. 电子与信息学报, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199
引用本文: 高云飞, 胡钰林, 刘鸣柳, 黄雨茜, 孙鹏. 多无人机输电线路巡检联合轨迹设计方法[J]. 电子与信息学报, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199
GAO Yunfei, HU Yulin, LIU Mingliu, HUANG Yuxi, SUN Peng. Joint Multi-UAV Trajectory Design for Power Line Inspection[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199
Citation: GAO Yunfei, HU Yulin, LIU Mingliu, HUANG Yuxi, SUN Peng. Joint Multi-UAV Trajectory Design for Power Line Inspection[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1958-1967. doi: 10.11999/JEIT231199

多无人机输电线路巡检联合轨迹设计方法

doi: 10.11999/JEIT231199
基金项目: 国家自然科学基金(62101389),国网湖北省电力有限公司科技项目(52153223000D),武汉大学-昆山杜克大学联合科研平台种子基金项目(WHUDKUZZJJ202201)
详细信息
    作者简介:

    高云飞:男,博士生,研究方向为无人机通信、轨迹设计、机器学习

    胡钰林:男,教授,博士生导师,研究方向为工业物联网、高可靠低时延通信、无人机通信、移动边缘计算等

    刘鸣柳:女,中级工程师,博士,研究方向为能源互联网、电力人工智能

    黄雨茜:女,硕士生,研究方向为无人机通信、轨迹设计、隐蔽通信

    孙鹏:男,助理教授,博士,研究方向为AI辅助智能运输系统(ITS)、车联网、无线传感网络(WSN)、移动车载云/边缘运算等

    通讯作者:

    刘鸣柳 liumingliu@whu.edu.cn

  • 中图分类号: TN92

Joint Multi-UAV Trajectory Design for Power Line Inspection

Funds: The National Natural Science Foundation of China (62101389), The Science and Technology Projects of State Grid Hubei Electric Power Co., Ltd. (52153223000D), The Seed-fund Support Program at the WHU-DKU Joint Research Platform (WHUDKUZZJJ202201)
  • 摘要: 无人机(UAV)技术在输电线路自动巡检的应用中具有重要的意义和广阔的应用空间。考虑到无人机的续航能力受限,无人机需要在电量耗尽前从机巢飞往指定巡检区域,完成输电塔杆的巡检,再安全返回机巢。为此,针对大范围输电线路巡检场景,该文以最小化巡检时间为优化目标,提出一种支持大范围输电线路多无人机巡检方法。具体而言,首先通过k-means++算法合理分配无人机巡检任务,再在巡检电池能量的约束下基于改进的模拟退火算法优化无人机巡检轨迹来提升巡检效率。最后,基于模拟真实环境中塔杆的分布数据,对所提出的无人机任务分配和轨迹设计算法进行仿真分析。仿真结果验证了所提算法通过多无人机巡检任务分配和轨迹设计可显著减少总的巡检时间。
  • 图  1  多无人机输电线塔杆巡检系统

    图  2  巡检任务分配

    图  3  无人机巡检任务分配

    图  4  本文方法无人机3维轨迹

    图  5  本文方法无人机2维轨迹

    图  6  本文方法无人机3维轨迹地图映射

    图  7  无改进模拟退火3维轨迹

    图  8  无改进模拟退火2维轨迹映射

    图  9  无改进模拟退火3维轨迹地图映射

    图  10  本算法与无改进模拟退火算法性能对比

    图  11  无人机不同电池能量与性能关系

    1  K-means++算法流程

     初始化: 设定$ K $值
     迭代
     (1)从数据集$ \left\{ {{{\boldsymbol{\alpha}} _1},{{\boldsymbol{\alpha}} _2}, \cdots ,{{\boldsymbol{\alpha}} _M}} \right\} $中随机选择一个样本点作为第一个初始聚类中心$ {{\boldsymbol{u}}_1} $;
     (2)对于数据集中的每一个数据$ {{\boldsymbol{\alpha}} _m} $,计算其到已选择的中心点中最近中心点的距离平方。$ D\left( {{{\boldsymbol{\alpha}} _m}} \right) = {\min _{{{\boldsymbol{u}}_k} \in U}}{\left\| {{{\boldsymbol{\alpha}} _m} - {{\boldsymbol{u}}_k}} \right\|^2} $,其中$ U $表
       示已选择的中心点的集合;
     (3)选择一个新的数据点$ {{\boldsymbol{u}}_k} $作为新的中心,选择的概率为$ P\left( {{{\boldsymbol{u}}_k}} \right) = \dfrac{{D{{\left( {{{\boldsymbol{u}}_k}} \right)}^2}}}{{\displaystyle\sum\nolimits_{{{\boldsymbol{u}}_k} \in U} {D{{\left( {{{\boldsymbol{u}}_k}} \right)}^2}} }} $;
     (4)如果选择了$ K $个聚类中心,则停止迭代;否则返回(1)。
    下载: 导出CSV

    2  基于2-opt模拟退火算法无人机轨迹优化

     输入:初始轨迹$ {{\boldsymbol{q}}_{{\text{current}}}} $,初始温度$ {T_{{\text{initial}}}} $,冷却率$ \rho $,终止温度
     $ {T_{{\text{final}}}} $,目标函数$ f\left( {\boldsymbol{q}} \right) $
     输出:最优轨迹$ {{\boldsymbol{q}}_{{\text{best}}}} $
     (1)设置$ T = {T_{{\text{initial}}}} $,$ {{\boldsymbol{q}}_{{\text{best}}}} $=$ {{\boldsymbol{q}}_{{\text{current}}}} $
     (2)While $ T > {T_{{\text{final}}}} $ do
     (3) 随机交换当前轨迹$ {{\boldsymbol{q}}_{{\text{current}}}} $两个坐标点产生新的轨迹$ {\boldsymbol{q}}'_{{\text{current}}} $
     (4) 通过2-opt算法对$ {\boldsymbol{q}}_{{\text{current}}}{{'}} $进行优化并产生新轨迹$ {{\boldsymbol{q}}_{{\text{new}}}} $
     (5) 计算目标函数的差异$ \Delta E = f\left( {{{\boldsymbol{q}}_{{\text{new}}}}} \right) - f\left( {{{\boldsymbol{q}}_{{\text{current}}}}} \right) $
     (6) If $ \Delta E < 0 $或$ {\text{random}}\left( {0,1} \right) < \exp ( - \Delta E/T) $ then
     (7)  $ {{\boldsymbol{q}}_{{\text{current}}}} $=$ {{\boldsymbol{q}}_{{\text{new}}}} $
     (8)  If $ f\left( {{{\boldsymbol{q}}_{{\text{new}}}}} \right) $<$ f\left( {{{\boldsymbol{q}}_{{\text{best}}}}} \right) $ then
     (9)   $ {{\boldsymbol{q}}_{{\text{best}}}} $=$ {{\boldsymbol{q}}_{{\text{new}}}} $
     (10) End if
     (11) End if
     (12) 更新温度$ T = \rho * T $
     (13) Return $ {{\boldsymbol{q}}_{{\text{best}}}} $
    下载: 导出CSV

    3  两步迭代策略优化无人机轨迹

     初始化:执行算法1的K-means++算法获得各个无人机的巡检任务分配,并设置迭代次数$ r = 0 $
     迭代
     (1)基于各个无人机分配的巡检任务,通过算法2中模拟退火算法优化各无人机的巡检轨迹;
     (2)判断各个无人机轨迹能否满足单次飞行约束,如果各个无人机满足单次飞行约束,停止迭代;否则将不满足的无人机巡检任务基于
     K-means++算法进行二分类;
     (3)$ r = r + 1 $;
     检查是否有相关簇在满足无人机单次飞行约束的条件下可以合并,若有则将其合并为同一簇。
    下载: 导出CSV
  • [1] YANG Lei, FAN Junfeng, LIU Yanhong, et al. A review on state-of-the-art power line inspection techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9350–9365. doi: 10.1109/TIM.2020.3031194.
    [2] VLAHINIĆ S, FRANKOVIĆ D, ĐUROVIĆ M Ž, et al. Measurement uncertainty evaluation of transmission line parameters[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9002407. doi: 10.1109/TIM.2021.3070600.
    [3] KATRASNIK J, PERNUS F, and LIKAR B. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 485–493. doi: 10.1109/TPWRD.2009.2035427.
    [4] DAI Lei, QI Juntong, HAN Jianda, et al. Camera selection for unmanned helicopter power line inspection[C]. IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 2012: 1–4. doi: 10.1109/ISGT-Asia.2012.6303238.
    [5] SHAHRAKI A, TAHERKORDI A, HAUGEN O, et al. A survey and future directions on clustering: From WSNs to IoT and modern networking paradigms[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 2242–2274. doi: 10.1109/tnsm.2020.3035315.
    [6] XING Liudong. Reliability in internet of things: Current status and future perspectives[J]. IEEE Internet of Things Journal, 2020, 7(8): 6704–6721. doi: 10.1109/JIOT.2020.2993216.
    [7] 徐常志, 靳一, 李立, 等. 面向6G的星地融合无线传输技术[J]. 电子与信息学报, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.

    XU Changzhi, JIN Yi, LI Li, et al. Wireless transmission technology of satellite-terrestrial integration for 6G mobile communication[J]. Journal of Electronics & Information Technology, 2021, 43(1): 28–36. doi: 10.11999/JEIT200363.
    [8] DI FRANCO C and BUTTAZZO G. Coverage path planning for UAVs photogrammetry with energy and resolution constraints[J]. Journal of Intelligent & Robotic Systems, 2016, 83(3): 445–462. doi: 10.1007/s10846-016-0348-x.
    [9] LI Yan, CHEN Hai, ER M J, et al. Coverage path planning for UAVs based on enhanced exact cellular decomposition method[J]. Mechatronics, 2011, 21(5): 876–885. doi: 10.1016/j.mechatronics.2010.10.009.
    [10] CABREIRA T M, DI FRANCO C, FERREIRA P R, et al. Energy-aware spiral coverage path planning for UAV photogrammetric applications[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3662–3668. doi: 10.1109/LRA.2018.2854967.
    [11] ZHOU Zhenyu, ZHANG Chuntian, XU Chen, et al. Energy-efficient industrial internet of UAVs for power line inspection in smart grid[J]. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2705–2714. doi: 10.1109/TII.2018.2794320.
    [12] 吴官翰, 贾维敏, 赵建伟, 等. 基于多智能体强化学习的混合博弈模式下多无人机辅助通信系统设计[J]. 电子与信息学报, 2022, 44(3): 940–950. doi: 10.11999/JEIT210662.

    WU Guanhan, JIA Weimin, ZHAO Jianwei, et al. MARL-based design of multi-unmanned aerial vehicle assisted communication system with hybrid gaming mode[J]. Journal of Electronics & Information Technology, 2022, 44(3): 940–950. doi: 10.11999/JEIT210662.
    [13] 张广驰, 严雨琳, 崔苗, 等. 无人机基站的飞行路线在线优化设计[J]. 电子与信息学报, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525.

    ZHANG Guangchi, YAN Yulin, CUI Miao, et al. Online trajectory optimization for the UAV-mounted base stations[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3605–3611. doi: 10.11999/JEIT200525.
    [14] ZHAN Cheng and ZENG Yong. Energy minimization for cellular-connected UAV: From optimization to deep reinforcement learning[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5541–5555. doi: 10.1109/TWC.2022.3142018.
    [15] ZHANG Wei, YANG Dingcheng, WU Fahui, et al. Trajectory design for UAV-based inspection system: A deep reinforcement learning approach[C]. 2023 IEEE International Conference on Communications Workshops (ICC Workshops), Rome, Italy, 2023: 1654–1659. doi: 10.1109/ICCWorkshops57953.2023.10283670.
    [16] ZHANG Yu, LI Junfeng, ZHANG Litong, et al. Energy consumption optimal design of power grid inspection trajectory for UAV mobile edge computing node[C]. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), Chongqing, China, 2021: 1316–1321. doi: 10.1109/ACPEE51499.2021.9436834.
    [17] CAO Peng, LIU Yi, QIU Ming, et al. MEC-driven UAV routine inspection system in wind farm under wind influence[C]. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), Xiangtan, China, 2019: 672–677. doi: 10.1109/ICICTA49267.2019.00148.
    [18] MONWAR M, SEMIARI O, and SAAD W. Optimized path planning for inspection by unmanned aerial vehicles swarm with energy constraints[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–6,doi: 10.1109/GLOCOM.2018.8647342.
    [19] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  246
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-04-10
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回