高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维点云目标识别对抗攻击研究综述

刘伟权 郑世均 郭宇 王程

刘伟权, 郑世均, 郭宇, 王程. 三维点云目标识别对抗攻击研究综述[J]. 电子与信息学报, 2024, 46(5): 1645-1657. doi: 10.11999/JEIT231188
引用本文: 刘伟权, 郑世均, 郭宇, 王程. 三维点云目标识别对抗攻击研究综述[J]. 电子与信息学报, 2024, 46(5): 1645-1657. doi: 10.11999/JEIT231188
LIU Weiquan, ZHENG Shijun, GUO Yu, WANG Cheng. A Survey of Adversarial Attacks on 3D Point Cloud Object Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1645-1657. doi: 10.11999/JEIT231188
Citation: LIU Weiquan, ZHENG Shijun, GUO Yu, WANG Cheng. A Survey of Adversarial Attacks on 3D Point Cloud Object Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1645-1657. doi: 10.11999/JEIT231188

三维点云目标识别对抗攻击研究综述

doi: 10.11999/JEIT231188
基金项目: 中国博士后科学基金(2021M690094),福厦泉国家自主创新示范区协同创新平台(3502ZCQXT2021003)
详细信息
    作者简介:

    刘伟权:男,副教授,研究方向为3维视觉、3维对抗学习、激光雷达数据智能处理

    郑世均:男,博士生,研究方向为3维视觉、3维对抗学习

    郭宇:男,硕士生,研究方向为3维视觉、3维对抗学习

    王程:男,博士,教授,研究方向为3维视觉、激光雷达数据智能处理、空间大数据分析

    通讯作者:

    王程 cwang@xmu.edu.cn

  • 中图分类号: TN249.3 ; TN957.52 ; TN958.98; TN972; TP39

A Survey of Adversarial Attacks on 3D Point Cloud Object Recognition

Funds: The China Postdoctoral Science Foundation (2021M690094), The FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform (3502ZCQXT2021003)
  • 摘要: 当前,人工智能系统在诸多领域都取得了巨大的成功,其中深度学习技术发挥了关键作用。然而,尽管深度神经网络具有强大的推理识别能力,但是依然容易受到对抗样本的攻击,表现出了脆弱性。对抗样本是经过特殊设计的输入数据,能够攻击并误导深度学习模型的输出。随着激光雷达等3维传感器的快速发展,使用深度学习技术解决3维领域的各种智能任务也越来越受到重视。采用深度学习技术处理3维点云数据的人工智能系统的安全性和鲁棒性至关重要,如基于深度学习的自动驾驶3维目标检测与识别技术。为了分析3维点云对抗样本对深度神经网络的攻击方式,揭示3维对抗样本对深度神经网络的干扰机制,该文总结了基于3维点云深度神经网络模型的对抗攻击方法的研究进展。首先,介绍了对抗攻击的基本原理和实现方法,然后,总结并分析了3维点云的数字域对抗攻击和物理域对抗攻击,最后,讨论了3维点云对抗攻击面临的挑战和未来的研究方向。
  • 图  1  原始点云和对抗点云示例

    图  2  数字域3维点云对抗攻击示例图[12]

    图  3  图谱域的3维点云对抗攻击[12]

    图  4  道路场景下的物理域对抗攻击[53]

    图  5  面向自动驾驶系统的对抗攻击[9]

    图  6  基于真实场景对抗位置的对抗攻击[51]

    表  1  3维点云对抗攻击的数据集

    数据集 类型 特点
    ModelNet40 仿真数据集 数据规模小,仿真目标结构完整、形状清晰、无噪声、类别多样
    ShapeNet 仿真数据集 数据规模小,仿真目标结构完整、形状清晰、无噪声、类别多样
    ScanObjectNN 真实世界数据集 数据规模小,真实世界的室内场景、室内目标扫描而获得的物体数据集
    KITTI 真实世界数据集 数据规模较大,面向自动驾驶的真实世界城市和街区的点云数据集
    NuScenes 真实世界数据集 数据规模大,面向自动驾驶的真实世界城市的点云数据集
    Waymo 真实世界数据集 数据规模大,面向自动驾驶的真实世界城市和郊区的点云数据集
    下载: 导出CSV
  • [1] LANCHANTIN J, WANG Tianlu, ORDONEZ V, et al. General multi-label image classification with transformers[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 16473–16483. doi: 10.1109/CVPR46437.2021.01621.
    [2] SUN Xiao, LIAN Zhouhui, and XIAO Jianguo. SRINet: Learning strictly rotation-invariant representations for point cloud classification and segmentation[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 980–988. doi: 10.1145/3343031.3351042.
    [3] HUYNH C, TRAN A T, LUU K, et al. Progressive semantic segmentation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 16750–16759. doi: 10.1109/CVPR46437.2021.01648.
    [4] LIU Weiquan, GUO Hanyun, ZHANG Weini, et al. TopoSeg: Topology-aware segmentation for point clouds[C]. The Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 1201–1208. doi: 10.24963/ijcai.2022/168.
    [5] CHEN Xiangning, XIE Cihang, TAN Mingxing, et al. Robust and accurate object detection via adversarial learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 16617–16626. doi: 10.1109/CVPR46437.2021.01635.
    [6] MIAO Zhenwei, CHEN JiKai, PAN Hongyu, et al. PVGNet: A bottom-up one-stage 3D object detector with integrated multi-level features[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 3278–3287. doi: 10.1109/CVPR46437.2021.00329.
    [7] SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
    [8] 刘复昌, 南博, 缪永伟. 基于显著性图的点云替换对抗攻击[J]. 中国图象图形学报, 2022, 27(2): 500–510. doi: 10.11834/jig.210546.

    LIU Fuchang, NAN Bo, and MIAO Yongwei. Point cloud replacement adversarial attack based on saliency map[J]. Journal of Image and Graphics, 2022, 27(2): 500–510. doi: 10.11834/jig.210546.
    [9] CAO Yulong, WANG Ningfei, XIAO Chaowei, et al. Invisible for both camera and LiDAR: Security of multi-sensor fusion based perception in autonomous driving under physical-world attacks[C]. 2021 IEEE Symposium on Security and Privacy (SP), San Francisco, USA, 2021: 176–194. doi: 10.1109/SP40001.2021.00076.
    [10] LIU Danlei, YU R, and SU Hao. Extending adversarial attacks and defenses to deep 3D point cloud classifiers[C]. 2019 IEEE International Conference on Image Processing (ICIP), Taipei, China, 2019: 2279–2283. doi: 10.1109/ICIP.2019.8803770.
    [11] ZHENG Shijun, LIU Weiquan, SHEN Siqi, et al. Adaptive local adversarial attacks on 3D point clouds[J]. Pattern Recognition, 2023, 144: 109825. doi: 10.1016/j.patcog.2023.109825.
    [12] HU Qianjiang, LIU Daizong, and HU Wei. Exploring the devil in graph spectral domain for 3D point cloud attacks[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 229–248. doi: 10.1007/978-3-031-20062-5_14.
    [13] ZHOU Hang, CHEN Dongdong, LIAO Jing, et al. LG-GAN: Label guided adversarial network for flexible targeted attack of point cloud based deep networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 10353–10362. doi: 10.1109/CVPR42600.2020.01037.
    [14] KURAKIN A, GOODFELLOW I J, and BENGIO S. Adversarial examples in the physical world[M]. YAMPOLSKIY R V. Artificial Intelligence Safety and Security. New York: Chapman and Hall/CRC, 2018: 99–112.
    [15] DONG Yinpeng, LIAO Fangzhou, PANG Tianyu, et al. Boosting adversarial attacks with momentum[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9185–9193. doi: 10.1109/CVPR.2018.00957.
    [16] CHARLES R Q, SU Hao, KAICHUN M, et al. Guibas. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16.
    [17] QI C R, YI Li, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114.
    [18] WANG Yue, SUN Yongbin, LIU Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1–12. doi: 10.1145/3326362.
    [19] LANG A H, VORA S, CAESAR H, et al. PointPillars: Fast encoders for object detection from point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 12689–12697. doi: 10.1109/CVPR.2019.01298.
    [20] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: Point-based 3D single stage object detector[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11037–11045. doi: 10.1109/CVPR42600.2020.01105.
    [21] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from point cloud[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11870–11879. doi: 10.1109/CVPR42600.2020.01189.
    [22] YIN Tianwei, ZHOU Xingyi, and KRÄHENBÜHL P. Center-based 3D object detection and tracking[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 11779–11788. doi: 10.1109/CVPR46437.2021.01161.
    [23] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PVRCNN: Point-voxel feature set abstraction for 3D object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 10526–10535. doi: 10.1109/CVPR42600.2020.01054.
    [24] SHI Shaoshuai, JIANG Li, DENG Jiajun, et al. PV-RCNN++: Point-voxel feature set abstraction with local vector representation for 3D object detection[J]. International Journal of Computer Vision, 2023, 131(2): 531–551. doi: 10.1007/s11263-022-01710-9.
    [25] WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D shapeNets: A deep representation for volumetric shapes[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1912–1920. doi: 10.1109/CVPR.2015.7298801.
    [26] YI Li, KIM V G, CEYLAN D, et al. A scalable active framework for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 210. doi: 10.1145/2980179.2980238.
    [27] UY M A, PHAM Q H, HUA B S, et al. Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 1588–1597. doi: 10.1109/ICCV.2019.00167.
    [28] GEIGER A, LENZ P, and URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 3354–3361. doi: 10.1109/CVPR.2012.6248074.
    [29] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: A multimodal dataset for autonomous driving[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11618–11628. doi: 10.1109/CVPR42600.2020.01164.
    [30] SUN Pei, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: Waymo open dataset[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2443–2451. doi: 10.1109/CVPR42600.2020.00252.
    [31] GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [32] YANG Jiancheng, ZHANG Qiang, FANG Rongyao, et al. Adversarial attack and defense on point sets[EB/OL]. https://arxiv.org/abs/1902.10899, 2019.
    [33] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
    [34] LIU Danlei, YU R, and SU Hao. Adversarial shape perturbations on 3D point clouds[C]. European Conference on Computer Vision, Glasgow, UK, 2020: 88–104. doi: 10.1007/978-3-030-66415-2_6.
    [35] MA Chengcheng, MENG Weiliang, WU Baoyuan, et al. Efficient joint gradient based attack against SOR defense for 3D point cloud classification[C]. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 1819–1827. doi: 10.1145/3394171.3413875.
    [36] ZHENG Tianhang, CHEN Changyou, YUAN Junsong, et al. PointCloud saliency maps[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 1598–1606. doi: 10.1109/ICCV.2019.00168.
    [37] CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy (SP), San Jose, USA, 2017: 39–57. doi: 10.1109/SP.2017.49.
    [38] XIANG Chong, QI C R, and LI Bo. Generating 3D adversarial point clouds[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 9128–9136. doi: 10.1109/CVPR.2019.00935.
    [39] WEN Yuxin, LIN Jiehong, CHEN Ke, et al. Geometry-aware generation of adversarial point Clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2984–2999. doi: 10.1109/TPAMI.2020.3044712.
    [40] TSAI T, YANG Kaichen, HO T Y, et al. Robust adversarial objects against deep learning models[C]. Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, USA, 2020: 954–962. doi: 10.1609/aaai.v34i01.5443.
    [41] KIM J, HUA, B S, NGUYEN D T, et al. Minimal adversarial examples for deep learning on 3D point clouds[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 7777–7786. doi: 10.1109/ICCV48922.2021.00770.
    [42] ARYA A, NADERI H, and KASAEI S. Adversarial attack by limited point cloud surface modifications[C]. 2023 6th International Conference on Pattern Recognition and Image Analysis, Qom, Islamic Republic of Iran, 2023: 1–8. doi: 10.1109/IPRIA59240.2023.10147168.
    [43] ZHAO Yiren, SHUMAILOV I, MULLINS R, et al. Nudge attacks on point-cloud DNNs[EB/OL]. https://arxiv.org/abs/2011.11637, 2020.
    [44] TAN Hanxiao and KOTTHAUS H. Explainability-aware one point attack for point cloud neural networks[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, USA, 2023: 4570–4579. doi: 10.1109/WACV56688.2023.00456.
    [45] SHI Zhenbo, CHEN Zhi, XU Zhenbo, et al. Shape prior guided attack: Sparser perturbations on 3D point clouds[C]. Thirty-Sixth AAAI Conference on Artificial Intelligence, Waikoloa, USA, 2022: 8277–8285. doi: 10.1609/aaai.v36i8.20802.
    [46] LIU Binbin, ZHANG Jinlai, and ZHU Jihong. Boosting 3D adversarial attacks with attacking on frequency[J]. IEEE Access, 2022, 10: 50974–50984. doi: 10.1109/ACCESS.2022.3171659.
    [47] LIU Daizong, HU Wei, and LI Xin. Point cloud attacks in graph spectral domain: When 3D geometry meets graph signal processing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(5): 3079–3095. doi: 10.1109/TPAMI.2023.3339130.
    [48] TAO Yunbo, LIU Daizong, ZHOU Pan, et al. 3DHacker: Spectrum-based decision boundary generation for hard-label 3D point cloud attack[C]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 14294–14304. doi: 10.1109/ICCV51070.2023.01319.
    [49] HUANG Qidong, DONG Xiaoyi, CHEN Dongdong, et al. Shape-invariant 3D adversarial point clouds[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 15314–15323. doi: 10.1109/CVPR52688.2022.01490.
    [50] LIU Daizong and HU Wei. Imperceptible transfer attack and defense on 3D point cloud classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(4): 4727–4746. doi: 10.1109/TPAMI.2022.3193449.
    [51] HAMDI A, ROJAS S, THABET A, et al. AdvPC: Transferable adversarial perturbations on 3D point clouds[C]. The 16th European Conference on Computer Vision (ECCV), Glasgow, UK, 2020: 241–257. doi: 10.1007/978-3-030-58610-2_15.
    [52] TANG Keke, SHI Yawen, WU Jianpeng, et al. NormalAttack: Curvature-aware shape deformation along normals for imperceptible point cloud attack[J]. Security and Communication Networks, 2022, 2022: 1186633. doi: 10.1155/2022/1186633.
    [53] TU J, REN Mengye, MANIVASAGAM S, et al. Physically realizable adversarial examples for LiDAR object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 13713–13722. doi: 10.1109/CVPR42600.2020.01373.
    [54] ABDELFATTAH M, YUAN Kaiwen, WANG Z J, et al. Adversarial attacks on camera-LiDAR models for 3D car detection[C]. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021: 2189–2194. doi: 10.1109/IROS51168.2021.9636638.
    [55] MIAO Yibo, DONG Yinpeng, ZHU Jun, et al. Isometric 3D adversarial examples in the physical world[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 1433.
    [56] YANG Kaichen, TSAI T, YU Honggang, et al. Robust roadside physical adversarial attack against deep learning in Lidar perception modules[C]. The 2021 ACM Asia Conference on Computer and Communications Security, Hong Kong, China, 2021: 349–362. doi: 10.1145/3433210.3453106.
    [57] ZHU Yi, MIAO Chenglin, ZHENG Tianhang, et al. Can we use arbitrary objects to attack LiDAR perception in autonomous driving?[C/OL]. The 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021: 1945–1960. doi: 10.1145/3460120.3485377.
    [58] CAO Yulong, BHUPATHIRAJU S H, NAGHAVI P, et al. You can’t see me: Physical removal attacks on LiDAR-based autonomous vehicles driving frameworks[C]. The 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, USA, 2023.
    [59] CAO Yulong, XIAO Chaowei, CYR B, et al. Adversarial sensor attack on LiDAR-based perception in autonomous driving[C]. The 2019 ACM SIGSAC Conference on Computer and Communications Security, London, United Kingdom, 2019: 2267–2281. doi: 10.1145/3319535.3339815.
    [60] SUN Jiachen, CAO Yulong, CHEN Q A, et al. Towards robust LiDAR-based perception in autonomous driving: General black-box adversarial sensor attack and countermeasures[C/OL]. The 29th USENIX Security Symposium, USENIX Security 2020, 2020.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  329
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-04-24
  • 网络出版日期:  2024-05-11
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回