Age of Information Analysis and Optimization in Unmanned Aerial Vehicles-assisted Integrated Sensing and Communication Systems
-
摘要: 在许多监测控制任务中,由于被监测目标和控制中心距离较远,控制中心难以直接获取目标实时的状态信息。无人机(UAV)可以发挥其高移动性优势,减少感知和通信距离,进而提升感知和通信能力,为远距离目标状态信息实时获取问题提供了新思路。对此,该文研究了UAV辅助通感一体化系统中的信息年龄(AoI)分析优化问题,首先分析了控制中心的状态更新过程,然后推导出平均峰值AoI的闭式表达式。进一步地,在多UAV多目标场景中,通过优化UAV在空中的感知位置和通信位置以及UAV和目标的匹配关系,来进一步降低系统的平均峰值AoI,改善状态更新的实时性。仿真结果验证了理论分析的正确性,同时表明了相比于对比方法,所提优化方法可以有效改善系统的AoI性能。Abstract: In many monitoring and control tasks, it is difficult for the control center to get the real-time status information directly because of the distance between the monitored target and the control center. The Unmanned Aerial Vehicles (UAV) can make full use of its advantages of high mobility, reduce the sensing and communication distance, and then improve the sensing and communication capabilities, which provides a new idea for real-time acquisition of remote target status information. In this paper, the optimization problem of Age of Information (AoI) analysis in UAV-assisted integrated sensing and communication system is studied. Firstly, the status update process of control center is analyzed, and then the closed-form expression of average peak AoI is derived. Further, in the multi-UAV multi-target scenario, the average peak AoI of the system is further reduced by optimizing the perception position and communication position of the UAV in the air, as well as the matching relationship between the UAV and the target, and the real-time status update is improved. The simulation results verify the correctness of the theoretical analysis, and show that the proposed optimization method can effectively improve the AoI performance of the system compared with the benchmark methods.
-
1 AoI性能优化算法
初始化:xc(0), xs(0), Q。 For m=1:M For k=1:K t=0 Do 对于xmc∈[min,采用
黄金分割法得到优化后的x_{\text{c}}^m\left( {t + 1} \right)。对于 x_{\text{s}}^m \in \left[ {x_{\text{c}}^m\left( {t + 1} \right),X} \right] ,采用黄金分割法得到最佳的
x_{\text{s}}^m\left( {t + 1} \right)。t \leftarrow t + 1。 Until t > {t_{\max }} 根据优化后的x_{\text{c}}^m和x_{\text{s}}^m,计算得到最小的平均峰值AoI\bar \varDelta {_k^{m*}}。 If \bar \varDelta {_k^{m*}} \le \tau Q_k^m \leftarrow \bar \varDelta _{k^{m*}}。 Else Q_k^m \leftarrow \infty 。 End If End for End for 采用匈牙利算法优化UAV与被监测目标的匹配关系,得到{{\boldsymbol{Q}}^*}。 -
[1] ABD-ELMAGID M A, PAPPAS N, and DHILLON H S. On the role of age of information in the internet of things[J]. IEEE Communications Magazine, 2019, 57(12): 72–77. doi: 10.1109/MCOM.001.1900041. [2] CAO Jie, ZHU Xu, SUN Sumei, et al. Toward industrial metaverse: Age of information, latency and reliability of short-packet transmission in 6G[J]. IEEE Wireless Communications, 2023, 30(2): 40–47. doi: 10.1109/MWC.2001.2200396. [3] JIANG Zhiyuan, KRISHNAMACHARI B, ZHENG Xi, et al. Timely status update in wireless uplinks: Analytical solutions with asymptotic optimality[J]. IEEE Internet of Things Journal, 2019, 6(2): 3885–3898. doi: 10.1109/JIOT.2019.2893319. [4] XIANG Zhongwu, YANG Weiwei, PAN Gaofeng, et al. Physical layer security in cognitive radio inspired NOMA network[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 700–714. doi: 10.1109/JSTSP.2019.2902103. [5] MA Ruiqian, YANG Weiwei, SHI Hui, et al. Covert communication with a spectrum sharing relay in the finite blocklength regime[J]. China Communications, 2023, 20(4): 195–211. doi: 10.23919/JCC.fa.2022-0490.202304. [6] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. IEEE Conference on Computer Communications (INFOCOM), Orlando, America, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689. [7] MU Xidong, WANG Zhaolin, and LIU Yuanwei. NOMA for integrating sensing and communications towards 6G: A multiple access perspective[J]. IEEE Wireless Communications. doi: 10.1109/MWC.015.2200559. [8] XIE Zhanyuan, JIANG Zheng, ZHU Jianchi, et al. Joint target sensing and energy-harvesting-based remote state monitoring: A CMDP approach[J]. IEEE Communications Letters, 2023, 27(10): 2613–2617. doi: 10.1109/LCOMM.2023.3303459. [9] ZHANG Qixun, WANG Xinna, LI Zhenhao, et al. Design and performance evaluation of joint sensing and communication integrated system for 5G mmWave enabled CAVs[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1500–1514. doi: 10.1109/JSTSP.2021.3109666. [10] QIN Zhen, WEI Zhenhua, QU Yuben, et al. AoI-aware scheduling for air-ground collaborative mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 2989–3005. doi: 10.1109/TWC.2022.3215795. [11] WANG Xijun, YI Mengjie, LIU Juan, et al. Cooperative data collection with multiple UAVs for information freshness in the internet of things[J]. IEEE Transactions on Communications, 2023, 71(5): 2740–2755. doi: 10.1109/TCOMM.2023.3255240. [12] JIANG Wenwen, AI Bo, CHENG Jing, et al. Sum of age-of-information minimization in aerial IRSs assisted wireless networks[J]. IEEE Communications Letters, 2023, 27(5): 1377–1381. doi: 10.1109/LCOMM.2023.3254502. [13] MU Junsheng, ZHANG Ronghui, CUI Yuanhao, et al. UAV meets integrated sensing and communication: Challenges and future directions[J]. IEEE Communications Magazine, 2023, 61(5): 62–67. doi: 10.1109/MCOM.008.2200510. [14] HU Jingzhi, ZHANG Hongliang, and SONG Lingyang. Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol[J]. IEEE Internet of Things Journal, 2019, 6(4): 6177–6189. doi: 10.1109/JIOT.2018.2876513. [15] CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366. [16] ZHANG Shuhang, ZHANG Hongliang, HAN Zhu, et al. Age of information in a cellular internet of UAVs: Sensing and communication trade-off design[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6578–6592. doi: 10.1109/TWC.2020.3004162. [17] 黄博, 方旭明, 陈煜. OFDMA中继网络变时域节能资源分配策略[J]. 电子与信息学报, 2013, 35(5): 1023–1030. doi: 10.3724/SP.J.1146.2012.01180.HUANG Bo, FANG Xuming, and CHEN Yu. Variable time-domain energy saving resource allocation for OFDMA relay networks[J]. Journal of Electronics & Information Technology, 2013, 35(5): 1023–1030. doi: 10.3724/SP.J.1146.2012.01180. [18] LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194. [19] YANG Weiwei, LU Xingbo, YAN Shihao, et al. Age of information for short-packet covert communication[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1890–1894. doi: 10.1109/LWC.2021.3085025. 期刊类型引用(23)
1. 胡城,蔡延光,黄嘉铖,曾庆丰. 蚁狮优化算法研究综述. 自动化与信息工程. 2024(03): 1-10+15 . 百度学术
2. 陈伟,杨盘隆,吴宣够. 改进蚁狮优化算法及其工程应用. 传感技术学报. 2023(04): 565-574 . 百度学术
3. 郭家虎,时曼玉. 自适应可调节边界的蚁狮优化算法. 安徽理工大学学报(自然科学版). 2023(04): 1-9+18 . 百度学术
4. 丁敏,夏兴宇,邹永杰,张乐,刘正堂. 基于改进蝴蝶优化算法的无人机3-D航迹规划方法. 南京航空航天大学学报. 2023(05): 851-858 . 百度学术
5. 王博文,王培,徐鲁豫. 基于紧凑蚁狮算法的三维路径规划研究. 微电子学与计算机. 2023(08): 19-27 . 百度学术
6. 韩统,汤安迪,周欢,徐登武,谢磊. 基于LASSA算法的多无人机协同航迹规划方法. 系统工程与电子技术. 2022(01): 233-241 . 百度学术
7. 李彦苍,吴悦. 基于高斯变异的蚁狮算法及其在组合优化中的应用. 中国科技论文. 2022(03): 295-304 . 百度学术
8. 张浩,覃涛,徐凌桦,王霄,杨靖. 改进多目标蚁狮算法的WSNs节点部署策略. 西安电子科技大学学报. 2022(05): 47-59 . 百度学术
9. 来磊,吴德伟,邹鲲,韩昆,李海林. 基于多准则交互膜进化算法的UAV三维航迹规划. 系统工程与电子技术. 2021(01): 138-146 . 百度学术
10. 马凯强,任利锋,曾喆,万剑华. 顾及恶劣海况的船舶救援路径规划. 海洋科学. 2021(05): 39-46 . 百度学术
11. 来磊,邹鲲,吴德伟,李保中. 交互策略改进MOFA进化的多UAV协同航迹规划. 系统工程与电子技术. 2021(08): 2282-2289 . 百度学术
12. 王沙沙,张则强,刘俊琦,陈凤. 多路径交互环形过道布置问题建模及改进蚁狮算法优化. 计算机集成制造系统. 2021(08): 2237-2247 . 百度学术
13. 靳江锋,刘旭. 联合多核FCM和改进GOA的多无人机协同侦查航迹规划. 兵器装备工程学报. 2021(11): 181-188 . 百度学术
14. 刘景森,霍宇,李煜. 优选策略的自适应蚁狮优化算法. 模式识别与人工智能. 2020(02): 121-132 . 百度学术
15. 李庆华,尤越,沐雅琪,张钊,冯超. 一种针对大型凹型障碍物的组合导航算法. 电子与信息学报. 2020(04): 917-923 . 本站查看
16. 李靖,杨帆. 基于改进灰狼优化算法的区域监测机器人路径规划. 科学技术与工程. 2020(15): 6122-6129 . 百度学术
17. 孟德智,葛斌. 基于蜂窝分区的蚁狮优化自适应路由算法. 金陵科技学院学报. 2020(02): 17-23 . 百度学术
18. 王茜,何庆,林杰,杨荣莹. 精英反向学习带扰动因子的混沌蚁狮算法. 智能计算机与应用. 2020(08): 51-57 . 百度学术
19. 杨帆,方玺,高飞,谢良. 面向三维陷阱空间的改进RRT算法航迹规划. 武汉理工大学学报. 2020(10): 98-106 . 百度学术
20. 黄长强. 未来空战过程智能化关键技术研究. 航空兵器. 2019(01): 11-19 . 百度学术
21. 徐钦帅,何庆,魏康园. 改进蚁狮算法的无线传感器网络覆盖优化. 传感技术学报. 2019(02): 266-275 . 百度学术
22. ZHANG Zhenxing,YANG Rennong,LI Huanyu,FANG Yuhuan,HUANG Zhenyu,ZHANG Ying. Antlion optimizer algorithm based on chaos search and its application. Journal of Systems Engineering and Electronics. 2019(02): 352-365 . 必应学术
23. 边莉,何辉,杨彦方,刘文静. 基于改进型蚁狮算法的PID控制器参数优化. 吉林大学学报(信息科学版). 2019(03): 292-298 . 百度学术
其他类型引用(23)
-