高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进YOLOv5算法的伪装目标检测方法

彭锐晖 赖杰 孙殿星 李莽 颜如玉 李雪

彭锐晖, 赖杰, 孙殿星, 李莽, 颜如玉, 李雪. 一种改进YOLOv5算法的伪装目标检测方法[J]. 电子与信息学报, 2024, 46(8): 3324-3333. doi: 10.11999/JEIT231170
引用本文: 彭锐晖, 赖杰, 孙殿星, 李莽, 颜如玉, 李雪. 一种改进YOLOv5算法的伪装目标检测方法[J]. 电子与信息学报, 2024, 46(8): 3324-3333. doi: 10.11999/JEIT231170
PENG Ruihui, LAI Jie, SUN Dianxing, LI Mang, YAN Ruyu, LI Xue. A Camouflaged Target Detection Method with Improved YOLOv5 Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3324-3333. doi: 10.11999/JEIT231170
Citation: PENG Ruihui, LAI Jie, SUN Dianxing, LI Mang, YAN Ruyu, LI Xue. A Camouflaged Target Detection Method with Improved YOLOv5 Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3324-3333. doi: 10.11999/JEIT231170

一种改进YOLOv5算法的伪装目标检测方法

doi: 10.11999/JEIT231170
基金项目: 航天科技集团稳定支持项目(ZY0110020009),国防科技重点实验室基金项目(2023-JCJQ-LB-016)
详细信息
    作者简介:

    彭锐晖:男,博士,副教授,研究方向为信息感知及应用、电磁隐身材料与目标特性

    赖杰:男,硕士生,研究方向为伪装目标检测、多源信息融合

    孙殿星:男,博士,副教授,研究方向为信号与数据处理、信息融合

    李莽:男,硕士生,研究方向为钙钛矿复合吸波材料

    颜如玉:女,硕士生,研究方向为雷达隐身设计

    李雪:女,硕士生,研究方向为深度学习、非显著性目标检测

    通讯作者:

    赖杰 laijie@hrbeu.edu.cn

  • 中图分类号: TN911.73

A Camouflaged Target Detection Method with Improved YOLOv5 Algorithm

Funds: China Aerospace Science and Technology Corporation Stabilization Support Project (ZY0110020009), The Defense Science and Technology Key Laboratory Fund Project (2023-JCJQ-LB-016)
  • 摘要: 为了深入挖掘伪装目标特征信息含量、充分发挥目标检测算法潜能,解决伪装目标检测精度低、漏检率高等问题,该文提出一种多模态图像特征级融合的伪装目标检测算法(CAFM-YOLOv5)。首先,构建伪装目标多波谱数据集用于多模态图像融合方法性能验证;其次,构建双流卷积通道用于可见光和红外图像特征提取;最后,基于通道注意力机制和空间注意力机制提出一种交叉注意力融合模块,以实现两种不同特征有效融合。实验结果表明,模型的检测精度达到96.4%、识别概率88.1%,优于YOLOv5参考网络;同时,在与YOLOv8等单模态检测算法、SLBAF-Net等多模态检测算法比较过程中,该算法在检测精度等指标上也体现出巨大优势。可见该方法对于战场军事目标检测具有实际应用价值,能够有效提升战场态势信息感知能力。
  • 图  1  YOLOv5算法网络结构图

    图  2  CAFM-YOLOv5网络结构图

    图  3  CAFM模块结构图

    图  4  通道注意力机制结构图

    图  5  空间注意力机制结构图

    图  6  多波谱伪装目标数据集

    图  7  不同方法在测试集上的检测结果

    图  8  损失函数变化曲线

    表  1  检测结果分类及其含义表

    检测结果含义
    TP将正类预测为正类数
    FP将负类预测为正类数
    TN将负类预测为负类数
    FN将正类预测为负类数
    下载: 导出CSV

    表  2  本文方法各项指标

    模型 数据集 Parameters Size(MB) Precision(%) Recall(%) mAP@0.5:0.95(%) RCR(%) fps(帧/s)
    YOLOv5 可见光 7012822 14.4 85.1 78.2 34.5 83.5 50
    红外 7012822 14.4 93.3 84.1 47.7 66.9 53
    CAFM-Net 可见光、红外 11557128 23.6 96.4 93.8 57.2 88.1 48
    下载: 导出CSV

    表  3  多种算法检测精度性能对比

    模型 数据集 特征提取骨干 图像输入尺寸 Parametrs mAP@0.5:0.95(%)
    Faster-Rcnn 可见光 ResNet50 640×640 7864320 34.1
    Faster-Rcnn 红外 ResNet50 640×640 7864320 36.3
    SSD 可见光 VGG-16 640×640 7235175 43.9
    SSD 红外 VGG-16 640×640 7235175 47.6
    YOLOv3 可见光 Darknet-53 416×416 6501172 34.1
    YOLOv3 红外 Darknet-53 416×416 6501172 39.1
    YOLOv4 可见光 CSPDarknet-53 416×416 6396314 27.8
    YOLOv4 红外 CSPDarknet-53 416×416 6396314 34.1
    YOLOv8 可见光 CSPDarknet-53 640×640 11125971 41.1
    YOLOv8 红外 CSPDarknet-53 640×640 11125971 51.1
    MHA-YOLOv5 可见光 CSPDarknet-53 640×640 7704906 53.3
    MHA-YOLOv5 红外 CSPDarknet-53 640×640 7704906 52.0
    DETR 可见光 Resnet50 800×800 42991616 53.6
    DETR 红外 Resnet50 800×800 42991616 53.4
    下载: 导出CSV

    表  4  多光谱数据集上多模态检测算法的结果

    模型 数据集 图像输入
    尺寸
    Parameters mAP@0.5:0.95
    (%)
    SLBAF-Net 可见光、红外 640×640 419430 20.7
    CFT 可见光、红外 640×640 44879052 50.4
    下载: 导出CSV
  • [1] SINGH S K, DHAWALE C A, and MISRA S. Survey of object detection methods in camouflaged image[J]. IERI Procedia, 2013, 4: 351–357. doi: 10.1016/j.ieri.2013.11.050.
    [2] 王荣昌, 王峰, 任帅军, 等. 基于双流融合网络的单兵伪装偏振成像检测[J]. 光学学报, 2022, 42(9): 0915001. doi: 10.3788/AOS202242.0915001.

    WANG Rongchang, WANG Feng, REN Shuaijun, et al. Polarization imaging detection of individual camouflage based on two-stream fusion network[J]. Acta Optica Sinica, 2022, 42(9): 0915001. doi: 10.3788/AOS202242.0915001.
    [3] LE T N, NGUYEN T V, NIE Zhongliang, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45–56. doi: 10.1016/j.cviu.2019.04.006.
    [4] FAN Dengping, JI Gepeng, SUN Guolei, et al. Camouflaged object detection[C]. IEEE/CVF Conference On Computer Vision And Pattern Recognition, Seattle, USA, 2020: 2774–2784. doi: 10.1109/CVPR42600.2020.00285.
    [5] FAN Dengping, JI Gepeng, ZHOU Tao, et al. PraNet: Parallel reverse attention network for polyp segmentation[C]. The 23rd International Conference on Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, Lima, Peru, 2020: 263–273. doi: 10.1007/978-3-030-59725-2_26.
    [6] TANKUS A and YESHURUN Y. Convexity-based visual camouflage breaking[J]. Computer Vision and Image Understanding, 2001, 82(3): 208–237. doi: 10.1006/cviu.2001.0912.
    [7] BHAJANTRI N U and NAGABHUSHAN P. Camouflage defect identification: A novel approach[C]. The 9th International Conference on Information Technology, Bhubaneswar, India, 2006: 145–148. doi: 10.1109/ICIT.2006.34.
    [8] ZHANG Wei, ZHOU Qikai, LI Ruizhi, et al. Research on camouflaged human target detection based on deep learning[J]. Computational Intelligence and Neuroscience, 2022, 2022: 7703444. doi: 10.1155/2022/7703444.
    [9] 赖杰, 彭锐晖, 孙殿星, 等. 融合注意力机制与多检测层结构的伪装目标检测[J]. 中国图象图形学报, 2024, 29(1): 134–146. doi: 10.11834/jig.221189.

    LAI Jie, PENG Ruihui, SUN Dianxing, et al. Detection of camouflage targets based on attention mechanism and multi-detection layer structure[J]. Journal of Image and Graphics, 2024, 29(1): 134–146. doi: 10.11834/jig.221189.
    [10] 刘珩, 冉建国, 杨鑫, 等. 基于DETR的迷彩伪装目标检测[J]. 现代电子技术, 2022, 45(17): 41–46. doi: 10.16652/j.issn.1004-373x.2022.17.008.

    LIU Heng, RAN Jianguo, YANG Xin, et al. Camouflage target detection based on detection transformer[J]. Modern Electronics Technique, 2022, 45(17): 41–46. doi: 10.16652/j.issn.1004-373x.2022.17.008.
    [11] YADAV D, ARORA M K, TIWARI K C, et al. Detection and identification of camouflaged targets using hyperspectral and LiDAR data[J]. Defence Science Journal, 2018, 68(6): 540–546. doi: 10.14429/dsj.68.12731.
    [12] HU Jianghua, CUI Guangzhen, and QIN Lie. A new method of multispectral image processing with camouflage effect detection[C]. SPIE 9675, AOPC 2015: Image Processing and Analysis, Beijing, China, 2015: 967510. doi: 10.1117/12.2199206.
    [13] CHENG Xiaolong, GENG Keke, WANG Ziwei, et al. SLBAF-net: Super-lightweight bimodal adaptive fusion network for UAV detection in low recognition environment[J]. Multimedia Tools and Applications, 2023, 82(30): 47773–47792. doi: 10.1007/s11042-023-15333-w.
    [14] FANG Qingyun, HAN Depeng, and WANG Zhaokui. Cross-modality fusion transformer for multispectral object detection[J]. arXiv: 2111.00273, 2021. doi: 10.48550/arXiv.2111.00273.
    [15] MA Jiayi, MA Yong, and Li Chang. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153–178. doi: 10.1016/j.inffus.2018.02.004.
    [16] 聂茜茜, 肖斌, 毕秀丽, 等. 基于超像素级卷积神经网络的多聚焦图像融合算法[J]. 电子与信息学报, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053.

    NIE Xixi, XIAO Bin, BI Xiuli, et al. Multi-focus image fusion algorithm based on super pixel level convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053.
    [17] GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv: 2205.12740, 2022. doi: 10.48550/arXiv.2205.12740.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  215
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2024-03-24
  • 网络出版日期:  2024-04-07
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回