高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向超大面阵CMOS图像传感器的全局斜坡一致性校正方法

许睿明 郭仲杰 刘绥阳 余宁梅

许睿明, 郭仲杰, 刘绥阳, 余宁梅. 面向超大面阵CMOS图像传感器的全局斜坡一致性校正方法[J]. 电子与信息学报, 2024, 46(7): 2952-2960. doi: 10.11999/JEIT231082
引用本文: 许睿明, 郭仲杰, 刘绥阳, 余宁梅. 面向超大面阵CMOS图像传感器的全局斜坡一致性校正方法[J]. 电子与信息学报, 2024, 46(7): 2952-2960. doi: 10.11999/JEIT231082
XU Ruiming, GUO Zhongjie, LIU Suiyang, YU Ningmei. Global Ramp Uniformity Correction Method for Super-large Array CMOS Image Sensors[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2952-2960. doi: 10.11999/JEIT231082
Citation: XU Ruiming, GUO Zhongjie, LIU Suiyang, YU Ningmei. Global Ramp Uniformity Correction Method for Super-large Array CMOS Image Sensors[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2952-2960. doi: 10.11999/JEIT231082

面向超大面阵CMOS图像传感器的全局斜坡一致性校正方法

doi: 10.11999/JEIT231082
基金项目: 国家自然科学基金(62171367),陕西省重点研发计划(2021GY-060),陕西省创新能力支持项目(2022TD-39)
详细信息
    作者简介:

    许睿明:男,博士生,研究方向为高性能CMOS图像传感器设计技术

    郭仲杰:男,教授,博导,研究方向为超大规模数模混合信号集成电路设计技术

    刘绥阳:女,博士生,研究方向为高性能CMOS图像传感器设计技术

    余宁梅:女,教授,博导,研究方向为超大规模智能SoC设计技术

    通讯作者:

    郭仲杰 zjguo@xaut.edu.cn

  • 中图分类号: TN47

Global Ramp Uniformity Correction Method for Super-large Array CMOS Image Sensors

Funds: The National Natural Science Foundation of China (62171367), The Key research and development plan of Shaanxi province (2021GY-060), Shaanxi Innovation Capability Support Project (2022TD-39)
  • 摘要: 针对大面阵CMOS图像传感器(CIS)中存在的斜坡信号不一致性问题,该文提出一种用于CMOS图像传感器的斜坡一致性校正方法。该误差校正方法基于误差存储和电平移位思想,在列级读出电路中引入用于存储各列斜坡不一致性误差的存储电容,根据存储的斜坡不一致性误差对各列的斜坡信号进行电平移位,确保斜坡信号的一致性。该文基于55 nm 1P4M CMOS工艺对提出的斜坡一致性校正方法完成了详细电路设计和全面仿真验证。在斜坡信号电压范围为1.4 V,斜坡信号斜率为71.908 V/ms,像素面阵规模为8 192(H)×8 192(V),单个像素尺寸为10 μm的设计条件下,该文提出的校正方法将斜坡不一致性误差从7.89 mV降低至36.8 μV。斜坡信号的微分非线性(DNL)为 +0.0013/–0.004 LSB,积分非线性(INL)为+0.045 /–0.02 LSB,列级固定模式噪声(CFPN)从1.9%降低到0.01%。该文提出的斜坡一致性校正方法在保证斜坡信号高线性度,不显著增加芯片面积和不引入额外功耗的基础上,斜坡不一致性误差降低了99.53%,为高精度CMOS图像传感器的设计提供了一定的理论支撑。
  • 图  1  CMOS图像传感器整体结构框图

    图  2  列并行读出架构

    图  3  列级读出电路操作时序

    图  4  积分型斜坡产生电路

    图  5  金属传输线寄生模型

    图  6  VC随金属传输线宽度和长度的变化

    图  7  节点处斜坡信号电压

    图  8  节点处斜坡信号斜率

    图  9  斜坡不一致性误差对SS ADC转换精度的影响

    图  10  斜坡一致性校正电路

    图  11  斜坡一致性校正电路具体工作时序

    图  12  列级读出电路版图设计

    图  13  校正前后斜坡不一致性误差

    图  14  校正后斜坡不一致性误差随PVT变化

    图  15  蒙特卡洛分析结果

    图  16  校正后斜坡信号线性度仿真

    图  17  不同斜率下校正前后斜坡不一致性误差

    图  18  校正前后半饱和灰度值

    表  1  测试结果与现有方法对比

    方法 工艺(nm) 像素阵列 像素尺寸(μm) 斜坡结构 分辨率(bit) CFPN(%)
    [8] 55 3 072×2 560 7.5 积分型 12 0.019
    [15] 55 8 320×8 320 5.7 电阻型 11 0.06
    [20] 110 1 024×240 2.9 电流舵型 11 0.08
    [21] 110 1 024×240 3.2 电容型 10 0.14
    本文 55 8 192×8 192 10 积分型 12 0.01
    下载: 导出CSV
  • [1] GUO Zhongjie, WANG Bin, LIU Suiyang, et al. High-linearity and high-speed ROIC of ultra-large array infrared detectors based on adaptive compensation and enhancement[J]. Sensors, 2023, 23(12): 5667. doi: 10.3390/s23125667.
    [2] ARAI T, YASUE T, KITAMURA K, et al. A 1.1μm 33-mpixel 240-fps 3-D-stacked CMOS image sensor with three-stage cyclic-cyclic-SAR analog-to-digital converters[J]. IEEE Transactions on Electron Devices, 2017, 64(12): 4992–5000. doi: 10.1109/TED.2017.2766297.
    [3] GUO Zhongjie, CHENG Xinqi, XU Ruiming, et al. A 1Gpixel 10FPS CMOS image sensor using pixel array high-speed readout technology[J]. Integration, 2023, 89: 114–122. doi: 10.1016/j.vlsi.2022.12.002.
    [4] LEE J, PARK H, SONG B, et al. High frame-rate VGA CMOS image sensor using non-memory capacitor two-step single-slope ADCs[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2015, 62(9): 2147–2155. doi: 10.1109/TCSI.2015.2451791.
    [5] GUO Zhongjie, WANG Yangle, XU Ruiming, et al. High-speed fully differential two-step ADC design method for CMOS image sensor[J]. Sensors, 2023, 23(2): 595. doi: 10.3390/s23020595.
    [6] XU Ruiming, GUO Zhongjie, YU Ningmei, et al. A high-speed 13-bit two-step single-slope ADC for large array CMOS image sensors[J]. Integration, 2023, 91: 119–125. doi: 10.1016/j.vlsi.2023.03.009.
    [7] IMAI K, YASUTOMI K, KAGAWA K, et al. A distributed ramp signal generator of column-parallel single-slope ADCs for CMOS image sensors[J]. IEICE Electronics Express, 2012, 9(24): 1893–1899. doi: 10.1587/elex.9.1893.
    [8] GUO Zhongjie, YU Ningmei, and WU Longsheng. A self-compensated approach for ramp kickback noise in CMOS image sensor column parallel single slope ADC[J]. Microelectronics Journal, 2022, 120: 105364. doi: 10.1016/j.mejo.2022.105364.
    [9] NOORWALI A A, QASIM S M, DOOST A S, et al. A 16-bit 4 MSPS DAC for lock-in amplifier in 65nm CMOS[C]. 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), Mexico City, Mexico, 2016: 1–5. doi: 10.1109/ICNSC.2016.7478965.
    [10] CHENG Xu, ZENG Xiaoyang, and FENG Qi. Analysis and improvement of ramp gain error in single-ramp single-slope ADCs for CMOS image sensors[J]. Microelectronics Journal, 2016, 58: 23–31. doi: 10.1016/j.mejo.2016.10.006.
    [11] DUMITRU F S, ILIE C R, and ENACHESCU M. Exploring the effect of segmentation on INL and DNL for a 10-bit DAC[C]. 2020 International Semiconductor Conference (CAS), Sinaia, Romania, 2020: 161–164. doi: 10.1109/CAS50358.2020.9268011.
    [12] SANKAR R S P, ASISH L, and BHUVAN B. Design of stable error-correction ramp generators considering process and run-time variations[C]. 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 2019: 257–260. doi: 10.1109/APCCAS47518.2019.8953112.
    [13] NIE Kaiming, ZHA Wanbin, SHI Xiaolin, et al. A single slope ADC with row-wise noise reduction technique for CMOS image sensor[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(9): 2873–2882. doi: 10.1109/TCSI.2020.2979321.
    [14] SAITO W, IIZUKA Y, KATO N, et al. A low noise and linearity improvement CMOS image sensor for surveillance camera with skew-relaxation local multiply circuit and on-chip testable ramp generator[C]. 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), Busan, Korea, 2021: 1–3. doi: 10.1109/A-SSCC53895.2021.9634710.
    [15] GUO Zhongjie, YU Ningmei, and WU Longsheng. Research on column FPN and black level calibration in large array CMOS image sensor[J]. Chinese Journal of Electronics, 2021, 30(2): 268–274. doi: 10.1049/cje.2021.02.004.
    [16] LEE J, BAEK I, YANG D, et al. On-chip FPN calibration for a linear-logarithmic APS using two-step charge transfer[J]. IEEE Transactions on Electron Devices, 2013, 60(6): 1989–1994. doi: 10.1109/TED.2013.2259236.
    [17] LIU Zhenwang, XU Jiangtao, WANG Xinlei, et al. A fixed-pattern noise correction method based on gray value compensation for TDI CMOS image sensor[J]. Sensors, 2015, 15(9): 23496–23513. doi: 10.3390/s150923496.
    [18] CHEN Ming, ZHOU Li, YANG YangJun, et al. A 15.5x-gain 0.29-mm2 CMOS readout circuit for 1.5-Mpixel 60-fps CMOS image sensor[J]. Analog Integrated Circuits and Signal Processing, 2021, 108(1): 89–99. doi: 10.1007/s10470-020-01778-8.
    [19] 郭仲杰, 王杨乐, 许睿明, 等. 应用于CMOS图像传感器的高速全差分两步式ADC设计方法[J]. 电子与信息学报, 2023, 45(9): 3410–3419. doi: 10.11999/JEIT221420.

    GUO Zhongjie, WANG Yangle, XU Ruiming, et al. high-speed fully differential two-step ADC design method for CMOS image sensor[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3410–3419. doi: 10.11999/JEIT221420.
    [20] KIM H J. 11-bit column-parallel single-slope ADC with first-step half-reference ramping scheme for high-speed CMOS image sensors[J]. IEEE Journal of Solid-State Circuits, 2021, 56(7): 2132–2141. doi: 10.1109/JSSC.2021.3059909.
    [21] PARK W, PIAO Canxing, LEE H, et al. CMOS image sensor with two-step single-slope ADCs and a detachable super capacitive DAC[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 849–853. doi: 10.1109/TCSII.2021.3118647.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  159
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 修回日期:  2024-02-02
  • 网络出版日期:  2024-02-29
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回