高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反向散射通信中标签选择策略中断性能分析

刘英挺 周治洋 耿梦丹 李兴旺

刘英挺, 周治洋, 耿梦丹, 李兴旺. 反向散射通信中标签选择策略中断性能分析[J]. 电子与信息学报, 2024, 46(6): 2401-2408. doi: 10.11999/JEIT231001
引用本文: 刘英挺, 周治洋, 耿梦丹, 李兴旺. 反向散射通信中标签选择策略中断性能分析[J]. 电子与信息学报, 2024, 46(6): 2401-2408. doi: 10.11999/JEIT231001
LIU Yingting, ZHOU Zhiyang, GENG Mengdan, LI Xingwang. Outage Performance of Tag Selection Scheme for Backscatter Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2401-2408. doi: 10.11999/JEIT231001
Citation: LIU Yingting, ZHOU Zhiyang, GENG Mengdan, LI Xingwang. Outage Performance of Tag Selection Scheme for Backscatter Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2401-2408. doi: 10.11999/JEIT231001

反向散射通信中标签选择策略中断性能分析

doi: 10.11999/JEIT231001
基金项目: 甘肃省自然科学基金(23JRRA849),国家自然科学基金(61861041),河南省科技攻关项目(232102211073),甘肃省博士后研究资助项目,甘肃省教育厅:青年博士支持项目(2024QB-045T)
详细信息
    作者简介:

    刘英挺:男,博士,副教授,研究方向为无线携能通信、非正交多址通信、反向散射通信

    周治洋:男,硕士生,研究方向为反向散射通信

    耿梦丹:女,硕士生,研究方向为反向散射通信

    李兴旺:男,博士,副教授,研究方向为反向散射通信

    通讯作者:

    刘英挺 liuyt2018@163.com

  • 中图分类号: TN926

Outage Performance of Tag Selection Scheme for Backscatter Communication Systems

Funds: The Natural Science Foundation of Gansu Province (23JRRA849), The National Natural Science Foundation of China (61861041), The Science and Technology Research Project of Henan Province (232102211073), Gansu Postdoctoral Research Funding Project, The Youth Doctoral Support Project of Gansu Provincial Department of Education (2024QB-045)
  • 摘要: 该文研究的反向散射通信(BackCom)系统由1个专用射频信号源、若干个标签及1个目的节点构成。在考虑了信道估计误差(CEE)的前提下,该文在Nakagami-m信道中,提出了能够最大化目的节点信噪比(SNR)的标签选择策略,推导了所提策略的中断概率和分集增益的解析表达式。该文的分析中,考虑了标签自身能耗对系统性能的影响。仿真结果验证了理论分析的正确性,同时考察了关键参数对系统性能的影响。理论分析和仿真结果均表明,信道估计误差的存在使得系统的分集增益为0。
  • 图  1  系统模型

    图  2  不同标签数量下系统的中断概率(ma=mb=2, N=2)

    图  3  CEE 和天线个数 N 对系统性能的影响(ma=mb, L=3)

    图  4  不同m值下系统的中断概率(L=3, $\varOmega_e $=10–5)

  • [1] VAN HUYNH N, HOANG D T, LU Xiao, et al. Ambient backscatter communications: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2889–2922. doi: 10.1109/COMST.2018.2841964.
    [2] SONG Chaoyun, DING Yuan, EID A, et al. Advances in wirelessly powered backscatter communications: From Antenna/RF circuitry design to printed flexible electronics[J]. Proceedings of the IEEE, 2022, 110(1): 171–192. doi: 10.1109/JPROC.2021.3125285.
    [3] DENG Dan, LI Xingwang, DANG Shuping, et al. Outage analysis for tag selection in reciprocal backscatter communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(2): 210–214. doi: 10.1109/LWC.2021.3122429.
    [4] YE Yinghui, SHI Liqin, CHU Xiaoli, et al. On the outage performance of ambient backscatter communications[J]. IEEE Internet of Things Journal, 2020, 7(8): 7265–7278. doi: 10.1109/JIOT.2020.2984449.
    [5] MURATKAR T S, BHURANE A, SHARMA P K, et al. Analysis of multi-tag ambient backscatter communication under time-selective fading[J]. IEEE Communications Letters, 2022, 26(1): 40–43. doi: 10.1109/LCOMM.2021.3126660.
    [6] LIU Yingting, YE Yinghui, and HU R Q. Secrecy outage probability in backscatter communication systems with tag selection[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2190–2194. doi: 10.1109/LWC.2021.3095969.
    [7] LI Dong, PENG Wei, and HU Fengye. Capacity of backscatter communication systems with tag selection[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10311–10314. doi: 10.1109/TVT.2019.2936648.
    [8] GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [9] LI Dong. Fairness-based multiuser scheduling for ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1150–1154. doi: 10.1109/LWC.2020.2982645.
    [10] YANG Nan, ELKASHLAN M, YEOH P L, et al. Multiuser MIMO relay networks in Nakagami-m fading channels[J]. IEEE Transactions on Communications, 2012, 60(11): 3298–3310. doi: 10.1109/TCOMM.2012.081412.110463.
    [11] LIU Zhipeng, YE Yinghui, CHU Xiaoli, et al. Secrecy performance of backscatter communications with multiple self-powered tags[J]. IEEE Communications Letters, 2022, 26(12): 2875–2879. doi: 10.1109/LCOMM.2022.3201031.
    [12] LI Xingwang, ZHENG Yike, ZENG Ming, et al. Enhancing secrecy performance for STAR-RIS NOMA networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2684–2688. doi: 10.1109/TVT.2022.3213334.
    [13] LIU Yingting, MA Jiaxiu, YE Yinghui, et al. Outage performance of BackCom systems with multiple self-powered tags under channel estimation error[J]. IEEE Communications Letters, 2022, 26(7): 1548–1552. doi: 10.1109/LCOMM.2022.3164453.
    [14] SHUKLA M K, YADAV S, and PUROHIT N. Cellular multiuser two-way relay network with cochannel interference and channel estimation error: Performance analysis and optimization[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3431–3446. doi: 10.1109/TVT.2017.2786308.
    [15] FAN Yijia, ADINOYI A, THOMPSON J S, et al. A simple distributed antenna processing scheme for cooperative diversity[J]. IEEE Transactions on Communications, 2009, 57(3): 626–629. doi: 10.1109/TCOMM.2009.03.070081.
    [16] JEFFREY A and ZWILLINGER D. Table of Integrals, Series, and Products[M]. 7th ed. London, U. K. : Academic Press, 2007: 1–1221.
    [17] OLVER F W J, LOZIER D W, BOISVERT R F, et al. Nist digital library of mathematical functions[EB/OL]. http://dlmf.nist.gov, 2023.
  • 加载中
图(4)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  119
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-12-11
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回