高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行自组织网的全双工双向时间传递技术研究

陈聪 徐强 赵宏志 邵士海 唐友喜

陈聪, 徐强, 赵宏志, 邵士海, 唐友喜. 飞行自组织网的全双工双向时间传递技术研究[J]. 电子与信息学报, 2024, 46(7): 2732-2739. doi: 10.11999/JEIT230949
引用本文: 陈聪, 徐强, 赵宏志, 邵士海, 唐友喜. 飞行自组织网的全双工双向时间传递技术研究[J]. 电子与信息学报, 2024, 46(7): 2732-2739. doi: 10.11999/JEIT230949
CHEN Cong, XU Qiang, ZHAO Hongzhi, SHAO Shihai, TANG Youxi. Research on Full-duplex Two-Way Time Transfer Techniques for Flying Ad Hoc Networks[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2732-2739. doi: 10.11999/JEIT230949
Citation: CHEN Cong, XU Qiang, ZHAO Hongzhi, SHAO Shihai, TANG Youxi. Research on Full-duplex Two-Way Time Transfer Techniques for Flying Ad Hoc Networks[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2732-2739. doi: 10.11999/JEIT230949

飞行自组织网的全双工双向时间传递技术研究

doi: 10.11999/JEIT230949
基金项目: 国家自然科学基金(U19B2014, 62071094, 61901396)
详细信息
    作者简介:

    陈聪:男,博士生,研究方向为通信网络协议、无线通信信号处理等

    徐强:男,副研究员,研究方向为无线通信信号处理、太赫兹通信技术等

    赵宏志:男,教授,博士生导师,研究方向为同时同频全双工、无线通信抗干扰技术等

    邵士海:男,教授,博士生导师,研究方向为无线通信信号处理、抗干扰与安全通信等

    唐友喜:男,教授,博士生导师,研究方向为同时同频全双工、扩频与移动通信等

    通讯作者:

    邵士海 ssh@uestc.edu.cn

  • 中图分类号: TN919.34

Research on Full-duplex Two-Way Time Transfer Techniques for Flying Ad Hoc Networks

Funds: The National Natural Science Foundation of China (U19B2014, 62071094, 61901396)
  • 摘要: 针对飞行自组网(FANET)中节点间相对运动导致双向时间传递精度下降的问题,该文提出一种全双工双向时间传递(TWTT)方法。首先,根据全双工双向时间传递过程构造了需要求解的方程组,推导了单次时间传递的同步误差表达式;然后,分析了在无频偏和有频偏条件下,迭代进行全双工双向时间传递的收敛性;最后,通过仿真分析和实验验证比较了全双工双向时间传递方法和传统双向时间传递方法的性能。仿真和实验结果表明,全双工双向时间传递方法在节点高速机动下,时间同步精度可达到与物理层时间戳相同的精度,优于现有的运动补偿方法。
  • 图  1  全双工双向时间传递流程

    图  2  无频偏下的全双工时间同步误差

    图  3  有频偏下的全双工时间同步误差

    图  4  频偏和移动速度对时间同步误差的影响

    图  5  四类运动情况下同步性能对比

    图  6  实验验证所用设备及场景

    表  1  小型化软件无线电平台设备指标

    参数 指标
    处理芯片 Xilinx XC7Z100
    射频收发芯片 ADI AD9371
    工作频段 1.4~1.7 GHz
    最大信号带宽 ≤100 MHz
    发射通道个数 2
    最大发射功率 ≥35 dBm
    发射衰减可调范围 0~30 dB
    接收通道个数 4
    接收增益可调范围 0~60 dB
    重量 ≤800 g
    体积 150 mm×100 mm×45 mm
    下载: 导出CSV

    表  2  物理层链路与信道模拟器指标

    参数 指标
    工作频段 1.4~1.7 GHz
    帧长度 400 μs
    基带采样率 15.36 MSps
    射频采样率 153.6 MSps
    物理层时间戳精度 约6.51 ns
    模拟传输距离 1~10 km
    模拟径向移动速度 0 m/s, 100 m/s, 200 m/s
    模拟参数更新周期 10 ms
    下载: 导出CSV

    表  3  秒脉冲偏差测试结果

    相对移动速度 协议 秒脉冲偏差(ns)
    最大值 最小值 均值
    静止 全双工协议 0.86 0.94 0.90
    PTP协议 0.33 0.41 0.38
    100 m/s 全双工协议 –1.23 –1.14 –1.18
    PTP协议 6.85 6.91 6.88
    200 m/s 全双工协议 1.71 1.77 1.75
    PTP协议 12.24 12.34 12.30
    下载: 导出CSV
  • [1] KIM D Y and LEE J W. Joint mission assignment and topology management in the mission-critical FANET[J]. IEEE Internet of Things Journal, 2020, 7(3): 2368–2385. doi: 10.1109/JIOT.2019.2958130.
    [2] LAKEW D S, SA’AD U, DAO N N, et al. Routing in flying ad hoc networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1071–1120. doi: 10.1109/COMST.2020.2982452.
    [3] ARAFAT M Y, POUDEL S, and MOH S. Medium access control protocols for flying Ad hoc networks: A review[J]. IEEE Sensors Journal, 2021, 21(4): 4097–4121. doi: 10.1109/JSEN.2020.3034600.
    [4] YANG Beiya and YANG Erfu. A survey on radio frequency based precise localisation technology for UAV in GPS-denied environment[J]. Journal of Intelligent & Robotic Systems, 2021, 103(3): 38. doi: 10.1007/s10846-021-01500-4.
    [5] DU Bin, MAO Ruijiu, KONG Nan, et al. Distributed data fusion for on-scene signal sensing with a multi-UAV system[J]. IEEE Transactions on Control of Network Systems, 2020, 7(3): 1330–1341. doi: 10.1109/TCNS.2020.2975228.
    [6] NANZER J A, MGHABGHAB S R, ELLISON S M, et al. Distributed phased arrays: Challenges and recent advances[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4893–4907. doi: 10.1109/TMTT.2021.3092401.
    [7] SEIJO O, VAL I, LUVISOTTO M, et al. Clock synchronization for wireless time-sensitive networking: A march from microsecond to nanosecond[J]. IEEE Industrial Electronics Magazine, 2022, 16(2): 35–43. doi: 10.1109/MIE.2021.3078071.
    [8] SEIJO Ó, LÓPEZ-FERNÁNDEZ J A, BERNHARD H P, et al. Enhanced timestamping method for subnanosecond time synchronization in IEEE 802.11 over WLAN standard conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5792–5805. doi: 10.1109/TII.2019.2959200.
    [9] PRAGER S, HAYNES M S, and MOGHADDAM M. Wireless subnanosecond RF synchronization for distributed ultrawideband software-defined radar networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4787–4804. doi: 10.1109/TMTT.2020.3014876.
    [10] MERLO J M, MGHABGHAB S R, and NANZER J A. Wireless picosecond time synchronization for distributed antenna arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(4): 1720–1731. doi: 10.1109/TMTT. 2022.3227878.
    [11] IEEE. IEEE Std 1588-2008 IEEE standard for a precision clock synchronization protocol for networked measurement and control systems[S]. New York: IEEE Standards Association, 2008. doi: 10.1109/IEEESTD.2008.4579760.
    [12] 于雪晖, 王盾, 李周, 等. 双向比对高精度物理时间同步方法[J]. 航空学报, 2019, 40(5): 203–217. doi: 10.7527/s1000-6893.2019.22507.

    YU Xuehui, WANG Dun, LI Zhou, et al. High accuracy physical time synchronization method based on two-way comparison[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 203–217. doi: 10.7527/s1000-6893.2019.22507.
    [13] ZHAO Sihao, ZHANG Xiaoping, CUI Xiaowei, et al. Optimal two-way TOA localization and synchronization for moving user devices with clock drift[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7778–7789. doi: 10.1109/TVT.2021.3092255.
    [14] JIA Tianyi, HO K C, WAGN Haiyan, et al. Localization of a moving object with sensors in motion by time delays and Doppler shifts[J]. IEEE Transactions on Signal Processing, 2020, 68: 5824–5841. doi: 10.1109/TSP.2020.3023972.
    [15] YANG Zhiyu, WANG Rui, JIANG Yi, et al. Joint estimation of velocity, Angle-of-Arrival and Range (JEVAR) using a conjugate pair of Zadoff-Chu sequences[J]. IEEE Transactions on Signal Processing, 2021, 69: 6009–6022. doi: 10.1109/TSP.2021.3122907.
    [16] ANTTILA L, LAMPU V, HASSANI S A, et al. Full-duplexing with SDR devices: Algorithms, FPGA implementation, and real-time results[J]. IEEE Transactions on Wireless Communications, 2021, 20(4): 2205–2220. doi: 10.1109/TWC.2020.3040226.
    [17] HUANG Xiaojing, LE A T, and GUO Y J. Joint analog and digital self-interference cancellation for full duplex transceiver with frequency-dependent I/Q imbalance[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2364–2378. doi: 10.1109/TWC.2022.3211316.
    [18] 余湋, 张毅, 张志亚, 等. 全双工测控链路自干扰抑制设计与实验验证[J]. 西安电子科技大学学报, 2023, 50(3): 182–191. doi: 10.19665/j.issn1001-2400.2023.03.017.

    YU Wei, ZHANG Yi, ZHANG Zhiya, et al. Design and experimental verification of self-interference suppression for full-duplex measurement and control links[J]. Journal of Xidian University, 2023, 50(3): 182–191. doi: 10.19665/j.issn1001-2400.2023.03.017.
    [19] YU Bin, QIAN Chen, LEE J, et al. Realizing high power full duplex in millimeter wave system: Design, prototype and results[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(9): 2893–2906. doi: 10.1109/JSAC.2023.3287609.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  169
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-12-05
  • 网络出版日期:  2023-12-13
  • 刊出日期:  2024-07-29

目录

    /

    返回文章
    返回