[1] |
ZHOU Xiaokang, LIANG Wei, SHE Jinhua, et al. Two-layer federated learning with heterogeneous model aggregation for 6G supported internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5308–5317. doi: 10.1109/TVT.2021.3077893.
|
[2] |
XU Chenhao, QU Youyang, LUAN T H, et al. An efficient and reliable asynchronous federated learning scheme for smart public transportation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6584–6598. doi: 10.1109/TVT.2022.3232603.
|
[3] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[4] |
ABDULRAHMAN S, TOUT H, OULD-SLIMANE H, et al. A survey on federated learning: The journey from centralized to distributed on-site learning and beyond[J]. IEEE Internet of Things Journal, 2021, 8(7): 5476–5497. doi: 10.1109/JIOT.2020.3030072.
|
[5] |
ZHU Hangyu, ZHANG Haoyu, and JIN Yaochu. From federated learning to federated neural architecture search: A survey[J]. Complex & Intelligent Systems, 2021, 7(2): 639–657. doi: 10.1007/s40747-020-00247-z.
|
[6] |
SUN Feng, ZHANG Zhenjiang, ZEADALLY S, et al. Edge computing-enabled internet of vehicles: Towards federated learning empowered scheduling[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 10088–10103. doi: 10.1109/TVT.2022.3182782.
|
[7] |
LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 2031–2063. doi: 10.1109/COMST.2020.2986024.
|
[8] |
YANG Zhigang, ZHANG Xuhua, WU Dapeng, et al. Efficient asynchronous federated learning research in the internet of vehicles[J]. IEEE Internet of Things Journal, 2023, 10(9): 7737–7748. doi: 10.1109/JIOT.2022.3230412.
|
[9] |
CHAI Haoye, LENG Supeng, CHEN Yijin, et al. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 3975–3986. doi: 10.1109/TITS.2020.3002712.
|
[10] |
SAPUTRA Y M, HOANG D T, NGUYEN D N, et al. Dynamic federated learning-based economic framework for internet-of-vehicles[J]. IEEE Transactions on Mobile Computing, 2023, 22(4): 2100–2115. doi: 10.1109/TMC.2021.3122436.
|
[11] |
WANG Yuwei and KANTARCI B. A novel reputation-aware client selection scheme for federated learning within mobile environments[C]. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, Pisa, Italy, 2020: 1–6. doi: 10.1109/CAMAD50429.2020.9209263.
|
[12] |
XIAO Huizi, ZHAO Jun, PEI Qingqi, et al. Vehicle selection and resource optimization for federated learning in vehicular edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11073–11087. doi: 10.1109/TITS.2021.3099597.
|
[13] |
贺文晨, 郭少勇, 邱雪松, 等. 基于DRL的联邦学习节点选择方法[J]. 通信学报, 2021, 42(6): 62–71. doi: 10.11959/j.issn.1000-436x.2021111.HE Wenchen, GUO Shaoyong, QIU Xuesong, et al. Node selection method in federated learning based on deep reinforcement learning[J]. Journal on Communications, 2021, 42(6): 62–71. doi: 10.11959/j.issn.1000-436x.2021111.
|
[14] |
YANG Peng, YAN Mengjiao, CUI Yaping, et al. FedDD: Federated double distillation in IoV[C]. 2022 IEEE 96th Vehicular Technology Conference, London, United Kingdom, 2022: 1–5,doi: 10.1109/VTC2022-Fall57202.2022.10012798.
|
[15] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|