高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强干扰环境下无速率随机码编译码方案及其性能分析

王义文 王千帆 马啸

王义文, 王千帆, 马啸. 强干扰环境下无速率随机码编译码方案及其性能分析[J]. 电子与信息学报, 2024, 46(10): 4017-4023. doi: 10.11999/JEIT230879
引用本文: 王义文, 王千帆, 马啸. 强干扰环境下无速率随机码编译码方案及其性能分析[J]. 电子与信息学报, 2024, 46(10): 4017-4023. doi: 10.11999/JEIT230879
WANG Yiwen, WANG Qianfan, MA Xiao. Rateless Random Coding Scheme and Performance Analysis in Strong Interference Environments[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4017-4023. doi: 10.11999/JEIT230879
Citation: WANG Yiwen, WANG Qianfan, MA Xiao. Rateless Random Coding Scheme and Performance Analysis in Strong Interference Environments[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4017-4023. doi: 10.11999/JEIT230879

强干扰环境下无速率随机码编译码方案及其性能分析

doi: 10.11999/JEIT230879
基金项目: 国家重点研发计划(2021YFA1000500),国家自然科学基金(62301617),广东省自然科学基金面上项目(2023A1515011056)
详细信息
    作者简介:

    王义文:男,博士生,研究方向为信道编码及其在无线通信中的应用

    王千帆:男,博士后,研究方向为信道编码及其在无线通信中的应用、无线电通信技术等

    马啸:男,教授,博士生导师,主要研究方向为信息与编码理论、编码调制技术、无线通信、光通信等

    通讯作者:

    马啸 maxiao@mail.sysu.edu.cn

  • 中图分类号: TN92

Rateless Random Coding Scheme and Performance Analysis in Strong Interference Environments

Funds: The National Key Research and Development Program of China (2021YFA1000500), The National Natural Science Foundation of China (62301617), Guangdong Basic and Applied Basic Research Foundation (2023A1515011056)
  • 摘要: 面向强干扰通信环境,区别于传统的无速率Luby变换(LT)码,该文提出一种基于伯努利随机构造的无速率编码方案,并在接收端采用高效的局部约束顺序统计量译码(LC-OSD)算法进行译码,从而有效对抗强干扰噪声,实现自适应超高可靠传输。为降低收发端通信资源消耗,提出了3个有效译码准则:(1) 基于随机码并集(RCU)界提出的启动准则,当接收符号数大于由RCU得到的阈值时才启动译码;(2) 基于软重量提出的早停准则,在译码过程中软重量超过一个预设的阈值则提前终止译码;(3) 基于码字与硬判决序列比较提出的跳过准则,当新接收序列的硬判决满足重编码校验时跳过当前译码。仿真结果显示,在块删除与加性噪声混合信道下,无速率随机码的性能显著优于LT码,且因无速率码具备自适应信道质量的能力,其性能同样显著优于固定速率码。仿真结果还显示了提出的启动、早停和跳过准则能够有效降低收发端的传输资源消耗和计算复杂度。
  • 图  1  信道传输示意图

    图  2  不同信噪比下不同码长的RCU性能

    图  3  无速率随机码与LT码性能比较

    图  4  相同误帧率下无速率随机码与LT码开销比较

    图  5  固定速率码与无速率码性能比较

    图  6  启动准则性能

    图  7  早停准则性能

    图  8  跳过准则接收端测试次数比较

    表  1  随机码并集限与实际仿真所需接收符号数对比

    信噪比(dB) ${L_{{\text{RCU}}}}$ 实际仿真
    1.0 150 151
    1.5 135 137
    2.0 128 126
    2.5 120 118
    3.0 110 110
    下载: 导出CSV
  • [1] IMT-2030(6G)推进组. 《6G典型场景和关键能力》白皮书[R]. 2022.

    IMT-2030 (6G) Propulsion Group. Typical scenarios and key capabilities of 6G white paper[R]. 2022.
    [2] 于全. 战术通信理论与技术[M]. 北京: 人民邮电出版社, 2020.

    YU Quan. Communications in Tactical Environments: Theories and Technologies[M]. Beijing: Posts & Telecom Press, 2020.
    [3] BYERS J W, LUBY M, MITZENMACHER M, et al. A digital fountain approach to reliable distribution of bulk data[J]. ACM SIGCOMM Computer Communication Review, 1998, 28(4): 56–67. doi: 10.1145/285243.285258.
    [4] LUBY M. LT codes[C]. Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, Canada, 2002: 271–271. doi: 10.1109/SFCS.2002.1181950.
    [5] SHOKROLLAHI A. Raptor codes[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2551–2567. doi: 10.1109/TIT.2006.874390.
    [6] YANG Shenghao and YEUNG R W. Batched sparse codes[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5322–5346. doi: 10.1109/TIT.2014.2334315.
    [7] CASSUTO Y and SHOKROLLAHI A. Online fountain codes with low overhead[J]. IEEE Transactions on Information Theory, 2015, 61(6): 3137–3149. doi: 10.1109/TIT.2015.2422697.
    [8] 姚渭箐, 易本顺. 新型LT码编译码方法及其在认知无线电中的应用[J]. 电子与信息学报, 2019, 41(3): 571–579. doi: 10.11999/JEIT180427.

    YAO Weiqing and YI Benshun. A novel encoding and decoding method of LT codes and application to cognitive radio[J]. Journal of Electronics & Information Technology, 2019, 41(3): 571–579. doi: 10.11999/JEIT180427.
    [9] 宋鑫, 程乃平, 倪淑燕, 等. 采用定长节点分类窗口的低误码平台LT编码算法[J]. 通信学报, 2021, 42(9): 31–42. doi: 10.11959/j.issn.1000-436x.2021155.

    SONG Xin, CHENG Naiping, NI Shuyan, et al. Low error floor LT coding algorithm by using fixed-length node classification window[J]. Journal on Communications, 2021, 42(9): 31–42. doi: 10.11959/j.issn.1000-436x.2021155.
    [10] 龚茂康. 中短长度LT码的展开图构造方法[J]. 电子与信息学报, 2009, 31(4): 885–888. doi: 10.3724/SP.J.1146.2008.00218.

    GONG Maokang. Unfolding graphs for constructing of short and moderate-length LT codes[J]. Journal of Electronics & Information Technology, 2009, 31(4): 885–888. doi: 10.3724/SP.J.1146.2008.00218.
    [11] FOSSORIER M P C and LIN Shu. Soft-decision decoding of linear block codes based on ordered statistics[J]. IEEE Transactions on Information Theory, 1995, 41(5): 1379–1396. doi: 10.1109/18.412683.
    [12] YUE Chentao, SHIRVANIMOGHADDAM M, LI Yonghui, et al. Segmentation-discarding ordered-statistic decoding for linear block codes[C]. Proceedings of 2019 IEEE Global Communications Conference, Waikoloa, America, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9014173.
    [13] YUE Chentao, SHIRVANIMOGHADDAM M, PARK G, et al. Linear-equation ordered-statistics decoding[J]. IEEE Transactions on Communications, 2022, 70(11): 7105–7123. doi: 10.1109/TCOMM.2022.3207206.
    [14] YUE Chentao, SHIRVANIMOGHADDAM M, PARK G, et al. Probability-based ordered-statistics decoding for short block codes[J]. IEEE Communications Letters, 2021, 25(6): 1791–1795. doi: 10.1109/LCOMM.2021.3058978.
    [15] WANG Yiwen, LIANG Jifan, and MA Xiao. Local constraint-based ordered statistics decoding for short block codes[C]. Proceedings of 2022 IEEE Information Theory Workshop, Mumbai, India, 2022: 107–112. doi: 10.1109/ITW54588.2022.9965916.
    [16] POLYANSKIY Y, POOR H V, and VERDÚ S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [17] FABREGAS A G I and TANG Qi. Coding in the block-erasure channel[C]. Proceedings of 2006 Australian Communications Theory Workshop, Perth, Australia, 2006: 19–24. doi: 10.1109/AUSCTW.2006.1625249.
    [18] LIANG Jifan, WANG Yiwen, CAI Suihua, et al. A low-complexity ordered statistic decoding of short block codes[J]. IEEE Communications Letters, 2023, 27(2): 400–403. doi: 10.1109/LCOMM.2022.3222819.
    [19] SESHADRI N and SUNDBERG C E W. List Viterbi decoding algorithms with applications[J]. IEEE Transactions on Communications, 1994, 42(234): 313–323. doi: 10.1109/TCOMM.1994.577040.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  45
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2024-06-12
  • 网络出版日期:  2024-09-05
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回