高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于排序码本的水声自适应OFDM通信中信道状态信息反馈研究

刘凇佐 韩雪 马璐 徐金颉 杨洋

刘凇佐, 韩雪, 马璐, 徐金颉, 杨洋. 基于排序码本的水声自适应OFDM通信中信道状态信息反馈研究[J]. 电子与信息学报, 2024, 46(5): 2095-2103. doi: 10.11999/JEIT230878
引用本文: 刘凇佐, 韩雪, 马璐, 徐金颉, 杨洋. 基于排序码本的水声自适应OFDM通信中信道状态信息反馈研究[J]. 电子与信息学报, 2024, 46(5): 2095-2103. doi: 10.11999/JEIT230878
LIU Songzuo, HAN Xue, MA Lu, XU Jinjie, YANG Yang. Research on Channel State Information Feedback in Underwater Acoustic Adaptive OFDM Communication Based on Sequenced Codebook[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2095-2103. doi: 10.11999/JEIT230878
Citation: LIU Songzuo, HAN Xue, MA Lu, XU Jinjie, YANG Yang. Research on Channel State Information Feedback in Underwater Acoustic Adaptive OFDM Communication Based on Sequenced Codebook[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2095-2103. doi: 10.11999/JEIT230878

基于排序码本的水声自适应OFDM通信中信道状态信息反馈研究

doi: 10.11999/JEIT230878
基金项目: 国家自然科学基金(6227116),国家重点研发计划(2021YFC***1101),山东省重点研发计划(2022CXGC020409),水声技术全国重点实验室基金(2023-JCJQ-LB-072-08)
详细信息
    作者简介:

    刘凇佐:男,教授,研究方向为水声通信技术、水声侦察技术、嵌入式开发等

    韩雪:女,硕士生,研究方向为水声高速通信等

    马璐:女,教授,研究方向为水声高速通信、水声多用户通信、水声通信网络、嵌入式开发等

    徐金颉:男,研究方向为水声高速通信等

    杨洋:女,博士生,研究方向为水声高速通信等

    通讯作者:

    马璐 malu@hrbeu.edu.cn

  • 中图分类号: TN929.3

Research on Channel State Information Feedback in Underwater Acoustic Adaptive OFDM Communication Based on Sequenced Codebook

Funds: The National Natural Science Foundation of China (62271161), The National Key R&D Plan (2021YFC***1101), The Key Research and Development Program of Shandong Province (2022CXGC020409), The National Key Laboratory Foundation of Underwater Acoustic Technology (2023-JCJQ-LB-072-08)
  • 摘要: 水声(UWA)信道时延扩展大等特点导致信道频响(CFR)快衰落,水声通信(UWAC)技术发展受到挑战。发射端获取有效可靠的信道状态信息(CSI)是自适应通信的前提,针对水声自适应正交频分复用(OFDM)通信的需求,该文提出基于排序码本的信道状态信息分组排序拟合反馈算法(CSI-GSFF),包括分组、排序、数据拟合3个步骤。该算法首先将相邻导频子载波分组,以组为反馈单元;然后对各组内的导频子载波按照信道增益值进行排序,以减轻水声信道频响快衰落造成的反馈开销大等不利影响;最后进行多项式拟合,排序操作有效地降低了拟合阶数。通过实测海试时变信道数据仿真,结果表明,该文提出的信道状态信息反馈算法能够基本达到完美信道状态信息情形下的水声自适应OFDM通信系统误码率性能,同时可以有效地减少反馈开销。
  • 图  1  基于有限反馈的水声自适应OFDM通信系统原理框图

    图  2  排序前后导频位置处信道增益曲线对比图

    图  3  分组排序拟合反馈算法示意图(以32组为例)

    图  4  试验设置图

    图  5  实测时变信道冲击响应图

    图  6  不同反馈算法间信道增益拟合曲线对比图

    图  7  Hughes-Hartogs算法下不同反馈算法自适应通信系统SNR-BER图

    表  1  仿真参数设置表

    参数名称参数值
    调制方式BPSK/QPSK/8PSK/16QAM
    采样频率(kHz)48
    中心频率(kHz)9
    信号带宽(kHz)6
    总子载波数目1024
    数据子载波数目704
    导频子载波数目256
    OFDM符号周期(ms)171
    循环前缀(ms)50
    下载: 导出CSV

    表  2  不同反馈算法间归一化均方误差对比

    反馈算法归一化均方误差(×10–5)
    多项式拟合(20阶)21.4
    多项式拟合(10阶)23.9
    压缩感知(压缩比为0.1)8.2
    压缩感知(压缩比为0.05)26.8
    分组排序拟合(32组2阶)1.1
    分组排序拟合(32组1阶)2.5
    下载: 导出CSV

    表  3  反馈量对比

    反馈算法 反馈量(Byte)
    多项式拟合(20阶) 42
    多项式拟合(10阶) 22
    压缩感知(压缩比为0.1) 408
    压缩感知(压缩比为0.05) 204
    分组排序拟合(32组2阶) 256
    分组排序拟合(32组1阶) 19
    下载: 导出CSV
  • [1] 惠俊英, 生雪莉. 水下声信道[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011: 11–35.

    HUI Junying and SHENG Xueli. Marine Navigation Systems[M]. Harbin: Harbin Engineering University Press, 2011: 11–35.
    [2] 张育芝, 张效民, 王安义, 等. 水声通信网络信道建模与仿真研究进展[J]. 科学技术与工程, 2021, 21(4): 1249–1261. doi: 10.3969/j.issn.1671-1815.2021.04.002.

    ZHANG Yuzhi, ZHANG Xiaomin, WANG Anyi, et al. Research progresses on channel modeling and simulation for underwater acoustic communication and networks[J]. Science Technology and Engineering, 2021, 21(4): 1249–1261. doi: 10.3969/j.issn.1671-1815.2021.04.002.
    [3] RADOSEVIC A, AHMED R, DUMAN T M, et al. Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results[J]. IEEE Journal of Oceanic Engineering, 2014, 39(2): 357–370. doi: 10.1109/JOE.2013.2253212.
    [4] WAN Lei, ZHOU Hao, XU Xiaoka, et al. Adaptive modulation and coding for underwater acoustic OFDM[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 327–336. doi: 10.1109/JOE.2014.2323365.
    [5] QIAO Gang, XIAO Yuzhu, WAN Lei, et al. Analysis of SNR metrics for a typical underwater acoustic OFDM system[J]. IEEE Access, 2019, 7: 183565–183579. doi: 10.1109/ACCESS.2019.2960304.
    [6] ZHANG Rongxin, MA Xiaoli, WANG Deqing, et al. Adaptive coding and bit-power loading algorithms for underwater acoustic transmissions[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5798–5811. doi: 10.1109/TWC.2021.3070363.
    [7] SU Wei, LIN Jiamin, CHEN Keyu, et al. Reinforcement learning-based adaptive modulation and coding for efficient underwater communications[J]. IEEE Access, 2019, 7: 67539–67550. doi: 10.1109/ACCESS.2019.2918506.
    [8] 罗亚松, 许江湖, 胡洪宁, 等. 正交频分复用传输速率最大化自适应水声通信算法研究[J]. 电子与信息学报, 2015, 37(12): 2872–2876. doi: 10.11999/JEIT150440.

    LUO Yasong, XU Jianghu, HU Hongning, et al. Research on self-adjusting OFDM underwater acoustic communication algorithm for transmission rate maximization[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2872–2876. doi: 10.11999/JEIT150440.
    [9] FU Qiang and SONG Aijun. Adaptive modulation for underwater acoustic communications based on reinforcement learning[C]. OCEANS 2018 MTS/IEEE Charleston, Charleston, USA, 2018: 1–8. doi: 10.1109/OCEANS.2018.8604746.
    [10] 殷敬伟, 高新博, 韩笑, 等. 稀疏贝叶斯学习水声信道估计与脉冲噪声抑制方法[J]. 声学学报, 2021, 46(6): 813–824. doi: 10.15949/j.cnki.0371-0025.2021.06.004.

    YIN Jingwei, GAO Xinbo, HAN Xiao, et al. Underwater acoustic channel estimation and impulsive noise mitigation based on sparse Bayesian learning[J]. Acta Acustica, 2021, 46(6): 813–824. doi: 10.15949/j.cnki.0371-0025.2021.06.004.
    [11] MA Lu, LI Tao, LIU Songzuo, et al. Efficient interpolation based OMP for sparse channel estimation in underwater acoustic OFDM[J]. Applied Acoustics, 2021, 172: 107606. doi: 10.1016/j.apacoust.2020.107606.
    [12] 殷敬伟, 吴雨珊, 韩笑, 等. 北极冰水混合水域的水声信道预测技术[J]. 信号处理, 2019, 35(9): 1496–1504. doi: 10.16798/j.issn.1003-0530.2019.09.006.

    YIN Jingwei, WU Yushan, HAN Xiao, et al. Underwater acoustic channel prediction in Arctic ice-water mixed waters[J]. Journal of Signal Processing, 2019, 35(9): 1496–1504. doi: 10.16798/j.issn.1003-0530.2019.09.006.
    [13] 吴雨珊. 自适应调制与功率分配的OFDM水声通信技术[D]. [硕士论文], 哈尔滨工程大学, 2019.

    WU Yushan. Adaptive modulation and power allocation for OFDM underwater acoustic communication[D]. [Master dissertation], Harbin Engineering University, 2019.
    [14] QIAO Gang, LIU Lei, MA Lu, et al. Adaptive downlink OFDMA system with low-overhead and limited feedback in time-varying underwater acoustic channel[J]. IEEE Access, 2019, 7: 12729–12741. doi: 10.1109/ACCESS.2019.2892812.
    [15] RADOSEVIC A, DUMAN T M, PROAJIS J G, et al. Adaptive OFDM for underwater acoustic channels with limited feedback[C]. 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, USA, 2011: 975–980. doi: 10.1109/ACSSC.2011.6190156.
    [16] ZHANG Yuzhi, HUANG Yi, WAN Lei, et al. Adaptive OFDMA with partial CSI for downlink underwater acoustic communications[J]. Journal of Communications and Networks, 2016, 18(3): 387–396. doi: 10.1109/JCN.2016.000054.
    [17] 张育芝, 孙彦景, 王斌, 等. 基于反馈信道状态信息的水声自适应OFDMA[J]. 系统工程与电子技术, 2021, 43(8): 2321–2331. doi: 10.12305/j.issn.1001-506X.2021.08.35.

    ZHANG Yuzhi, SUN Yanjing, WANG Bin, et al. Underwater acoustic adaptive OFDMA based on feedback channel state information[J]. Systems Engineering and Electronics, 2021, 43(8): 2321–2331. doi: 10.12305/j.issn.1001-506X.2021.08.35.
    [18] MA Hui, JIAO Jianzhou, CHEN Jianmei, et al. A fast channel state information feedback scheme based on compressive sensing for underwater acoustic MIMO systems[C]. 2016 35th Chinese Control Conference (CCC), Chengdu, China, 2016: 5003–5007. doi: 10.1109/ChiCC.2016.7554131.
    [19] HUANG Xiaopeng and LIU Yong. Capacity criterion-based power allocation for OFDM cooperative underwater acoustic communications with limited feedback[C]. 2012 Oceans, Hampton Roads, USA, 2012: 1–4. doi: 10.1109/OCEANS.2012.6404796.
    [20] HAN Y, SHIN W, and LEE J. Projection-based differential feedback for FDD massive MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1): 202–212. doi: 10.1109/TVT.2016.2542195.
    [21] JANG J, LEE H, HWANG S, et al. Deep learning-based limited feedback designs for MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(4): 558–561. doi: 10.1109/LWC.2019.2962114.
    [22] LI Baosheng, ZHOU Shengli, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 198–209. doi: 10.1109/JOE.2008.920471.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  103
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2024-03-14
  • 网络出版日期:  2024-04-10
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回