高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于整网估计的星间链路天线相位中心偏差在轨特性研究

李宗楠 徐子晨 林红磊 范磊 叶小舟 鲁祖坤 王飞雪

李宗楠, 徐子晨, 林红磊, 范磊, 叶小舟, 鲁祖坤, 王飞雪. 基于整网估计的星间链路天线相位中心偏差在轨特性研究[J]. 电子与信息学报, 2023, 45(11): 4060-4071. doi: 10.11999/JEIT230842
引用本文: 李宗楠, 徐子晨, 林红磊, 范磊, 叶小舟, 鲁祖坤, 王飞雪. 基于整网估计的星间链路天线相位中心偏差在轨特性研究[J]. 电子与信息学报, 2023, 45(11): 4060-4071. doi: 10.11999/JEIT230842
LI Zongnan, XU Zichen, LIN Honglei, FAN Lei, YE Xiaozhou, LU Zukun, WANG Feixue. Research on In-orbit Characteristics of Inter-satellite links Phase Center Offsets Based on Whole-network Estimation[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4060-4071. doi: 10.11999/JEIT230842
Citation: LI Zongnan, XU Zichen, LIN Honglei, FAN Lei, YE Xiaozhou, LU Zukun, WANG Feixue. Research on In-orbit Characteristics of Inter-satellite links Phase Center Offsets Based on Whole-network Estimation[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4060-4071. doi: 10.11999/JEIT230842

基于整网估计的星间链路天线相位中心偏差在轨特性研究

doi: 10.11999/JEIT230842
详细信息
    作者简介:

    李宗楠:女,讲师,博士,研究方向为北斗/GNSS实时高精度质量控制和定轨定位技术等

    徐子晨:男,硕士生,研究方向为低轨卫星导航等

    林红磊:男,副研究员,博士,研究方向为信号处理等

    范磊:男,助理研究员,博士,研究方向为高精度数据处理等

    叶小舟:男,助理研究员,博士,研究方向为系统仿真等

    鲁祖坤:男,高级工程师,博士,研究方向为星际导航与定位技术等

    王飞雪:男,教授,博士,研究方向为无线电导航等

    通讯作者:

    鲁祖坤  luzukun@nudt.edu.cn

  • 中图分类号: TN961

Research on In-orbit Characteristics of Inter-satellite links Phase Center Offsets Based on Whole-network Estimation

  • 摘要: 星间链路(ISL)是我国北斗三号克服区域布站、实现高精度服务的关键,其天线相位中心偏差(PCO)在设备出厂时会依据质量、设计姿态进行地面标定,但在卫星发射、入轨及在轨阶段,燃料消耗、天线展开姿态等均会引起卫星质量与姿态的变化,这将导致在轨的PCO与地面标定值不一致 ,该变化量会作为误差引入到测量值,进而影响卫星轨道确定精度。因此,该文研究了在轨卫星的星间链路天线相位中心偏差标定方法,联合星间、星地观测,建立了基于整网估计的星间链路天线相位中心偏差在轨估计方法,并利用两周的实测数据进行对北斗三号所有中轨卫星(MEO)进行验证,同时结合卫星生产商、轨道面进行在轨特性的详细分析,最后验证了其对轨道确定精度的影响。结果表明,该文方法可有效估计在轨卫星星间链路天线相位中心偏差,并发现,卫星在轨后大部分卫星的星间链路天线相位中心偏差基本与地面一致,但C36, C37, C41, C42卫星在Z方向与地面标定值存在15 cm左右的偏差,C25, C26, C43, C44在Y轴上存在符号相反的现象,且数值上有10 cm左右的偏差,C25, C26卫星在Z方向上存在近30 cm的偏差,正确标定在轨卫星星间链路天线相位中心偏差后,相比地面标定产品,轨道精度可提升15%。
  • 图  1  MEO卫星建链示意图

    图  2  天线相位中心偏差示意图

    图  3  整网估计星间链路PCO的架构图

    图  4  整网估计星间链路PCO的算法流程图

    图  5  本文选取的99个地面测站分布图

    图  6  北斗三号MEO卫星星间链路天线相位中心偏差在轨标定时间序列

    图  7  北斗三号MEO卫星星间链路PCO在轨标定值与出厂标定值对比

    图  8  星间链路天线相位中心偏差地面标定值与在轨标定值对轨道精度的影响

    表  1  北斗三号卫星基本信息一览表

    轨道
    类型
    轨道面 卫星/PRN 卫星厂商 星间链路
    设备厂商
    MEO 轨道面A C27,C29,C34,
    C35,C43,C44
    SECM SECM-1
    C28 SECM-3
    C30 未公开
    轨道面B C19,C20,C21,C22,
    C33,C41,C42
    CAST CASC-1
    C32 CASC-2
    轨道面C C23,C36,C45 CAST CASC-2
    C24,C37,C46 CASC-1
    C25,C26 SECM SECM-2
    IGSO 113.2°E C38,C39,C40 CAST CASC-1
    106.6°E
    104.3°E
    GEO 140°E C59,C60,C61 CAST CASC-1
    80°E
    110.5°E
    下载: 导出CSV

    表  2  实验策略一览表

    项目大类 项目 描述
    观测值与参数估计 观测值 BDS
    频点 BDS: B1I+B3I;无电离层
    组合观测值;ISL
    参数估计方法 最小二乘法
    处理间隔 300 s
    解算弧长 1 d
    截止高度角
    测站坐标 IGS周解文件
    轨道摄动力模型 地球重力场 EGM 2008
    N体引力 天体位置来自
    JPL DE405文件
    海潮 FES 2004
    固体潮和极潮 按照IERS 2010协议改正
    天线推力 模型改正
    光压模型 9参数 ECOM2模型
    地球反照压 模型改正
    经验力 未考虑
    大气误差项 对流层误差 ZTD:每小时估计1组
    电离层误差 1阶项采用无电离层组合消除,
    高阶项采用模型改正
    其他 卫星天线误差 igs14.atx
    接收机天线误差 igs14.atx,若无BDS数据,
    以GPS L1/L2信息代替
    整周模糊度 双差模糊度固定
    下载: 导出CSV
  • [1] 杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39(1): 1–6.

    YANG Yuanxi. Progress, contribution and challenges of compass/Beidou satellite navigation system[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1): 1–6.
    [2] 杨元喜, 任夏. 自主卫星导航的空间基准维持[J]. 武汉大学学报:信息科学版, 2018, 43(12): 1780–1787. doi: 10.13203/j.whugis20180169

    YANG Yuanxi and REN Xia. Maintenance of space datum for autonomous satellite navigation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1780–1787. doi: 10.13203/j.whugis20180169
    [3] 李龙龙, 耿国桐, 李作虎. 国外卫星导航系统星间链路发展研究[J]. 测绘科学技术学报, 2016, 33(2): 133–138. doi: 10.3969/j.issn.1673-6338.2016.02.005

    LI Longlong, GENG Guotong, and LI Zuohu. Study of the development of the inter-satellite links in foreign GNSS[J]. Journal of Geomatics Science and Technology, 2016, 33(2): 133–138. doi: 10.3969/j.issn.1673-6338.2016.02.005
    [4] 周善石, 胡小工, 刘利, 等. 导航卫星精密定轨与时间同步技术进展[J]. 天文学报, 2019, 60(4): 57–66. doi: 10.15940/j.cnki.0001-5245.2019.04.005

    ZHOU Shanshi, HU Xiaogong, LIU Li, et al. Status of satellite orbit determination and time synchronization technology for global navigation satellites system[J]. Acta Astronomica Sinica, 2019, 60(4): 57–66. doi: 10.15940/j.cnki.0001-5245.2019.04.005
    [5] 杨元喜, 许扬胤, 李金龙, 等. 北斗三号系统进展及性能预测——试验验证数据分析[J]. 中国科学:地球科学, 2018, 61(5): 614–624. doi: 10.1360/N072017-00434

    YANG Yuanxi, XU Yangyin, LI Jinlong, et al. Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system[J]. Science China Earth Sciences, 2018, 61(5): 614–624. doi: 10.1360/N072017-00434
    [6] 毛悦, 贾小林, 宋小勇, 等. 北斗三号基本系统空间信号性能分析[J]. 测绘科学技术学报, 2019, 36(2): 111–115. doi: 10.3969/j.issn.1673-6338.2019.02.001

    MAO Yue, JIA Xiaolin, SONG Xiaoyong, et al. Analysis of space signal performance of Basic BDS-3 navigation satellite system[J]. Journal of Geomatics Science and Technology, 2019, 36(2): 111–115. doi: 10.3969/j.issn.1673-6338.2019.02.001
    [7] 郭树人, 蔡洪亮, 孟轶男, 等. 北斗三号导航定位技术体制与服务性能[J]. 测绘学报, 2019, 48(7): 810–821. doi: 10.11947/j.AGCS.2019.20190091

    GUO Shuren, CAI Hongliang, MENG Yi’nan, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 810–821. doi: 10.11947/j.AGCS.2019.20190091
    [8] 陈金平, 尤政, 焦文海. 基于星间距离和方向观测的导航卫星自主定轨研究[J]. 宇航学报, 2005, 26(1): 43–46. doi: 10.3321/j.issn:1000-1328.2005.01.009

    CHEN Jinping, YOU Zheng, and JIAO Wenhai. Research on autonav of navigation satellite constellation based on crosslink range and inter-satellites orientation observation[J]. Journal of Astronautics, 2005, 26(1): 43–46. doi: 10.3321/j.issn:1000-1328.2005.01.009
    [9] 陈忠贵. 基于星间链路的导航卫星星座自主运行关键技术研究[D]. [博士论文], 国防科学技术大学, 2012.

    CHEN Zhonggui. Key technologies of autonomous operation for navigation satellite constellations using inter-satellite tracking data[D]. [Ph. D. dissertation], National University of Defense Technology, 2012.
    [10] 刘经南, 曾旭平, 夏林元, 等. 导航卫星自主定轨的算法研究及模拟结果[J]. 武汉大学学报:信息科学版, 2004, 29(12): 1040–1044. doi: 10.3969/j.issn.1671-8860.2004.12.002

    LIU Jingnan, ZENG Xuping, XIA Linyuna, et al. Algorithm and simulation of autonomous orbit determination for navigation satellites[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1040–1044. doi: 10.3969/j.issn.1671-8860.2004.12.002
    [11] 唐成盼, 胡小工, 周善石, 等. 利用星间双向测距数据进行北斗卫星集中式自主定轨的初步结果分析[J]. 中国科学:物理学 力学 天文学, 2017, 47(2): 029501. doi: 10.1360/SSPMA2016-00355

    TANG Chengpan, HU Xiaogong, ZHOU Shanshi, et al. Centralized autonomous orbit determination of Beidou navigation satellites with inter-satellite link measurements: Preliminary results[J]. Scientia Sinica(Physica,Mechanica&Astronomica), 2017, 47(2): 029501. doi: 10.1360/SSPMA2016-00355
    [12] 朱俊. 基于星间链路的导航卫星轨道确定及时间同步方法研究[D]. [博士论文], 国防科学技术大学, 2011.

    ZHU Jun. Research on orbit determination and time synchronizing of navigation satellite based on cross links[D]. [Ph. D. dissertation], National University of Defense Technology, 2011.
    [13] CHANG Jiachao, SHANG Lin, and LI Guotong. The research on system error of Inter-satellite-link (ISL) measurements for autonomous navigation of Beidou system[J]. Advances in Space Research, 2017, 60(1): 65–81. doi: 10.1016/j.asr.2017.03.016
    [14] MAINE K P, ANDERSON P, and LANGER J. Crosslinks for the next-generation GPS[C]. Proceedings of 2003 IEEE Aerospace Conference Proceedings, Big Sky, USA, 2003: 4_1589–4_1596.
    [15] XIE Jun, WANG Haihong, LI Peng, et al. Satellite navigation inter-satellite link technology[M]. XIE Jun, WANG Haihong, LI Peng, et al. Satellite Navigation Systems and Technologies. Singapore: Springer, 2021: 181–215.
    [16] IGNATOVICH E I and SCHEKUTJEV A F. Results of imitating tests of some versions of onboard algorithms for SC GLONASS inter-satellite measurement processing[C]. The 15th Saint Petersburg International Conference on Integrated Navigation Systems, Saint Petersburg, USA, 2008.
    [17] GILL E. Precise GNSS-2 satellite orbit determination based on Inter-satellite-links[C]. The 14th International Symposium on Space Flight Mechanics, Iguassu, Brazil, 1999.
    [18] TANG Chengpan, HU Xiaogong, ZHOU Shanshi, et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements[J]. Journal of Geodesy, 2018, 92(10): 1155–1169. doi: 10.1007/s00190-018-1113-7
    [19] REN Xia, YANG Yuanxi, ZHU Jun, et al. Comparing satellite orbit determination by batch processing and extended Kalman filtering using inter-satellite link measurements of the next-generation BeiDou satellites[J]. GPS Solutions, 2019, 23(1): 25. doi: 10.1007/s10291-018-0816-9
    [20] LIU Li, ZHANG Tianqiao, ZHOU Shanshi, et al. Improved design of control segment in BDS‐3[J]. Navigation, 2019, 66(1): 37–47. doi: 10.1002/navi.297
    [21] XIE Xin, GENG Tao, ZHAO Qile, et al. Precise orbit determination for BDS-3 satellites using satellite-ground and inter-satellite link observations[J]. GPS Solutions, 2019, 23(2): 40. doi: 10.1007/s10291-019-0823-5
    [22] LV Yifei, GENG Tao, ZHAO Qile, et al. Initial assessment of BDS-3 preliminary system signal-in-space range error[J]. GPS Solutions, 2020, 24(1): 16. doi: 10.1007/s10291-019-0928-x
    [23] LOU Yidong, DAI Xiaolei, GONG Xiaopeng, et al. A review of real-time multi-GNSS precise orbit determination based on the filter method[J]. Satellite Navigation, 2022, 3(1): 15. doi: 10.1186/s43020-022-00075-1
    [24] DILSSNER F, SPRINGER T, FLOHRER C, et al. Estimation of phase center corrections for GLONASS-M satellite antennas[J]. Journal of Geodesy, 2010, 84(8): 467–480. doi: 10.1007/s00190-010-0381-7
    [25] DILSSNER F. GPS IIF-1 antenna phase center and attitude modeling[C]. Proceedings of International Technical Meeting of the Sate llite Division of the Institute of Navigation, Portland, USA, 2010: 59–64.
    [26] DACH R, SCHMID R, SCHMITZ M, et al. Improved antenna phase center models for GLONASS[J]. GPS Solutions, 2011, 15(1): 49–65. doi: 10.1007/s10291-010-0169-5
    [27] WANG Chen, ZHAO Qile, GUO Jing, et al. The contribution of intersatellite links to BDS‐3 orbit determination: Model refinement and comparisons[J]. Navigation, 2019, 66(1): 71–82. doi: 10.1002/navi.295
    [28] XIE Xin, GENG Tao, ZHAO Qile, et al. Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations[J]. Journal of Geodesy, 2020, 94(7): 64. doi: 10.1007/s00190-020-01394-4
    [29] LÜ Yifei, GENG Tao, ZHAO Qile, et al. Evaluation of BDS-3 orbit determination strategies using ground-tracking and inter-satellite link observation[J]. Remote Sensing, 2020, 12(16): 2647. doi: 10.3390/rs12162647
    [30] 温敬朋, 杨健, 王沙飞. 电子战装备技术发展现状与展望[J]. 信息对抗技术, 2022, 1(1): 1–10. doi: 10.12399/j.issn.2097-163x.2022.01.001

    WEN Jingpeng, YANG Jian, and WANG Shafei. Development status and prospect of electronic warfare equipment technology[J]. Information Countermeasure Technology, 2022, 1(1): 1–10. doi: 10.12399/j.issn.2097-163x.2022.01.001
    [31] YANG Daoning, YANG Jun, LI Gang, et al. Globalization highlight: Orbit determination using BeiDou inter-satellite ranging measurements[J]. GPS Solutions, 2017, 21(3): 1395–1404. doi: 10.1007/s10291-017-0626-5
    [32] WANG Haihong, XIE Jun, ZHUANG Jianlou, et al. Performance analysis and progress of inter-satellite-link of Beidou system[C]. The 30th International Technical Meeting of the Satellite Division of the Institute of Navigation, Portland, USA, 2017.
    [33] 张方. 卫星导航系统星间链路拓扑及路由设计[D]. [硕士论文], 西安电子科技大学, 2020.

    ZHANG Fang. A topology and routing design of navigation satellite system inter-satellite links[D]. [Master dissertation], Xidian University, 2020.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  211
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-04
  • 修回日期:  2023-09-29
  • 网络出版日期:  2023-10-09
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回