高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂环境下基于自适应卡尔曼滤波的时间比对跟踪算法

程燕 王海峰 王学运 郭梁 张升康 葛军

程燕, 王海峰, 王学运, 郭梁, 张升康, 葛军. 复杂环境下基于自适应卡尔曼滤波的时间比对跟踪算法[J]. 电子与信息学报, 2023, 45(11): 4110-4116. doi: 10.11999/JEIT230813
引用本文: 程燕, 王海峰, 王学运, 郭梁, 张升康, 葛军. 复杂环境下基于自适应卡尔曼滤波的时间比对跟踪算法[J]. 电子与信息学报, 2023, 45(11): 4110-4116. doi: 10.11999/JEIT230813
CHENG Yan, WANG Haifeng, WANG Xueyun, GUO Liang, ZHANG Shengkang, GE Jun. A Time Transfer Tracking Loop Based on Adaptive Kalman Filter in Complex Conditions[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4110-4116. doi: 10.11999/JEIT230813
Citation: CHENG Yan, WANG Haifeng, WANG Xueyun, GUO Liang, ZHANG Shengkang, GE Jun. A Time Transfer Tracking Loop Based on Adaptive Kalman Filter in Complex Conditions[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4110-4116. doi: 10.11999/JEIT230813

复杂环境下基于自适应卡尔曼滤波的时间比对跟踪算法

doi: 10.11999/JEIT230813
详细信息
    作者简介:

    程燕:女,工程师,研究方向为高精度时间同步

    王海峰:男,高级工程师,研究方向为高精度时间同步

    王学运:男,研究员,研究方向为时频计量

    郭梁:男,工程师,研究方向为高精度时间同步

    张升康:男,研究员,研究方向为时频计量

    葛军:女,研究员,研究方向为时频计量

    通讯作者:

    张升康  zhangsk@126.com

  • 中图分类号: TN76

A Time Transfer Tracking Loop Based on Adaptive Kalman Filter in Complex Conditions

  • 摘要: 在雷达、车载等动态协同组网系统中,高精度时间同步是该系统正常工作的基本条件。但是在动态组网系统或者低截获场景下,时间比对信号强度弱,并处于动态场景,此时时间同步系统鲁棒性差、同步精度低。因此,需要提高时间同步系统在复杂的动态组网系统下的时间同步精度。调制解调器是双向时间比对系统的核心设备,而跟踪环路是其中关键部分。复杂场景下跟踪环路很容易失锁,为了提高跟踪环路鲁棒性,该文提出一种基于自适应卡尔曼滤波(AKF)的跟踪算法。该算法引入自适应因子来调节系统噪声协方差矩阵,从而应对外部变化的输入信号。试验结果显示,与传统锁相环跟踪环路(PLL)和标准卡尔曼滤波跟踪环相比,在弱信号和动态信号同时存在时该算法跟踪鲁棒性和自适应性更好,并且算法复杂度不高。该算法对于提高动态协同组网系统的时间同步精度具有重要意义。
  • 图  1  微波双向时间比对系统框图

    图  2  时间比对信号跟踪环路框图

    图  3  提出的AKF算法流程图

    图  4  提出的时间比对信号AKF跟踪环路框图

    图  5  试验配置框图

    图  6  模拟复杂场景信号的载噪比和速度变化情况

    图  7  模拟信号的跟踪结果图

    表  1  迭代1次所需的计算量

    算法计算量 乘法数 加法数
    标准KF计算量 102 81
    AKF自适应因子的计算量 43 28
    AKF增加的计算量 42% 34%
    下载: 导出CSV
  • [1] 杨俊, 单庆晓. 卫星授时原理与应用[M]. 北京: 国防工业出版社, 2013: 1–16.

    YANG Jun and SHAN Qingxiao. Satellite Timing Principle and Application[M]. Beijing: National Defense Industry Press, 2013: 1–16.
    [2] CRESPI F V, SANDENBERGH S, O’HAGAN D, et al. Dynamic two-way time transfer between moving platforms for netted radar applications[C]. 2023 24th International Radar Symposium (IRS), Berlin, Germany, 2023. doi: 10.23919/IRS57608.2023.10172403.
    [3] 蒋伊琳, 尹子茹, 宋宇. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132

    JIANG Yilin, YIN Ziru, and SONG Yu. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics & Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132
    [4] 景月娟. 动态站的卫星双向时间传递关键技术研究[D]. [博士论文], 中国科学院大学, 2016.

    JING Yuejuan. Study on key technologies of two-way satellite time transfer based on mobile station[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2016.
    [5] WANG Wei, YANG Xuhai, LI Weichao, et al. Research on the influence of the residual effects of TWSTFT on the triangular closure difference[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5503512. doi: 10.1109/TIM.2022.3219488
    [6] HUANG Y J, FUJIEDA M, TAKIGUCHI H, et al. Stability improvement of an operational two-way satellite time and frequency transfer system[J]. Metrologia, 2016, 53(2): 881–890. doi: 10.1088/0026-1394/53/2/881
    [7] WON J H, DÖTTERBÖCK D, and EISSFELLER B. Performance comparison of different forms of Kalman filter approaches for a vector-based GNSS signal tracking loop[J]. Navigation, 2010, 57(3): 185–199. doi: 10.1002/j.2161-4296.2010.tb01777.x
    [8] FAN Yunsheng, QIAO Shuanghu, WANG Guofeng, et al. A modified adaptive Kalman filtering method for maneuvering target tracking of unmanned surface vehicles[J]. Ocean Engineering, 2022, 266: 112890. doi: 10.1016/j.oceaneng.2022.112890
    [9] FARIÑA B, TOLEDO J, and ACOSTA L. Augmented Kalman filter design in a localization system using onboard sensors with intrinsic delays[J]. IEEE Sensors Journal, 2023, 23(11): 12105–12113. doi: 10.1109/JSEN.2023.3269126
    [10] LIU Shede, ZHANG Tao, ZHANG Jiayu, et al. A new coupled method of SINS/DVL integrated navigation based on improved dual adaptive factors[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8504211. doi: 10.1109/TIM.2021.3106118
    [11] TANG Xinghua, FALCO G, FALLETTI E, et al. Theoretical analysis and tuning criteria of the Kalman filter-based tracking loop[J]. GPS Solutions, 2015, 19(3): 489–503. doi: 10.1007/s10291-014-0408-2
    [12] KAZEMI P L, O'DRISCOLL C, and LACHAPELLE G. Digital phase locked loop with frequency rate feedback[C]. The 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, USA, 2009: 201–208.
    [13] YIN Zhonggang, LI Guoyin, ZHANG Yanqing, et al. Symmetric-strong-tracking-extended-Kalman-filter-based sensorless control of induction motor drives for modeling error reduction[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 650–662. doi: 10.1109/TII.2018.2810850
    [14] MENG Yang, GAO Shesheng, ZHONG Yongmin, et al. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration[J]. Acta Astronautica, 2016, 120: 171–181. doi: 10.1016/j.actaastro.2015.12.014
    [15] GAO Wei, LI Jingchun, ZHOU Guangtao, et al. Adaptive Kalman filtering with recursive noise estimator for integrated SINS/DVL systems[J]. The Journal of Navigation, 2015, 68(1): 142–161. doi: 10.1017/S0373463314000484
    [16] LO K, LU Qiang, and KWON W H. Comments on “optimal solution of the two-stage Kalman estimator”[J]. IEEE Transactions on Automatic Control, 2002, 47(1): 198–199. doi: 10.1109/9.981745
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  109
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-10-12
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回