Target Detection in the Interrupted-Sampling Repeater Jamming Background Based on Multi-subband Matching Filter Method
-
摘要: 间歇采样转发干扰(ISRJ)是一种基于欠采样原理的新型雷达干扰技术,此类干扰信号能够在雷达1维距离像(HRRP)上形成密集假目标,给目标检测带来一定挑战。针对雷达在间歇采样转发干扰背景下无法准确检测到目标的问题,一种基于多层子带匹配滤波的抗间歇采样转发干扰目标检测算法被提出。该方法首先以传统雷达匹配滤波函数为基础设计子带匹配滤波函数;随后,针对间歇采样转发干扰信号和目标回波信号的时间差异,构建子带匹配滤波信号模型,逐步分析并揭示了间歇采样转发干扰信号对子带匹配滤波函数时宽的敏感性;最后,基于此设计出基于多层子带匹配滤波的抗间歇采样转发干扰目标检测方法,并进行了仿真实验验证。实验结果表明:多层子带匹配滤波方法无需事先获得干扰的先验信息,可使雷达在受到间歇采样转发干扰且信干比大于–20 dB时,目标检测概率大于80%。Abstract: Interrupted-Sampling Repeater Jamming (ISRJ) is an advanced radar interference, which is based on the under-sampling theory. The kind of this interference may introduce a train of false targets into the High-Resolution Range Profile (HRRP), and create some challenges for the target detection. To solve this dilemma, a multi-subband matching filter method is proposed. Firstly, the subband matching filters is obtained by the traditional matching filter. Then, the signal models of the subband matching filters are established by the difference between the ISRJ and the target echo. As the ISRJ is sensitive to the time width of the subband matching filter, a multi-subband matching filter method is presented for the target detection in ISRJ back-ground. Simulation results indicate that the ISRJ can be suppressed by the multi-subband matching filter without the prior information about the ISRJ, and the detection probability of the radar target can be above 80% when the signal to interference ratio of the radar is above –20 dB.
-
表 1 仿真参数设置
类型 项目 参数 项目 参数 雷达
参数雷达载频 10 GHz 带宽 500 MHz 脉冲重复频率 2 kHz 脉冲宽度 20 μs 雷达波形 LFM 采样频率 1.2 GHz 目标
参数目标雷达 点目标 运动状态 静止 目标位置 –2 m SNR –10 dB 虚警概率 10–4 干扰参数 直接转发 干扰位置 30 m 占空比 50% 重复转发 干扰位置 30 m 重复次数 3次 循环转发 干扰位置 30 m 循环顺序 倒序 蒙特卡罗
实验蒙特卡罗
次数1 000 SIR
采样时宽–45~–5 dB
1~3 μs表 2 仿真参数设置
类型 项目 参数 项目 参数 雷达
参数雷达载频 10 GHz 带宽 500 MHz 脉冲重复频率 2kHz 脉冲宽度 20 μs 雷达波形 LFM 采样频率 1.2 GHz 目标
参数目标雷达 点目标 运动状态 静止 目标位置 –2 m SNR –10 dB 虚警概率 10–4 干扰
参数间歇采样频率 100~300 kHz 占空比 20%~50% 干扰位置 3 m SIR –50~0 dB 蒙特卡罗次数 1 000次 SIR步进 1 dB -
[1] 王福来, 庞晨, 殷加鹏, 等. 一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法[J]. 雷达学报, 2022, 11(2): 278–288. doi: 10.12000/JR22020WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020 [2] LIU Yongcai, WANG Wei, PAN Xiaoyi, et al. Inverse omega-K algorithm for the electromagnetic deception of synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3037–3049. doi: 10.1109/JSTARS.2016.2543961 [3] 王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑 信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series E: Information Sciences, 2007, 50(1): 113–123. doi: 10.3969/j.issn.1674-7259.2006.08.007. [4] ZHOU Kai, SU Yi, WANG Daoyou, et al. Improved SAR interrupted-sampling repeater jamming countermeasure based on waveform agility and mismatched filter design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5206916. doi: 10.1109/TGRS.2023.3270351 [5] 周凯, 李德鑫, 粟毅, 等. 基于雷达发射波形和非匹配滤波联合设计的间歇采样转发干扰抑制方法[J]. 电子与信息学报, 2021, 43(7): 1939–1946. doi: 10.11999/JEIT200299ZHOU Kai, LI Dexin, SU Yi, et al. Joint transmitted waveform and mismatched filter design against interrupted-sampling repeater jamming[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1939–1946. doi: 10.11999/JEIT200299 [6] 李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087 [7] TIAN Tian, ZHOU Feng, BAI Xueru, et al. A partitioned deceptive jamming method against TOPSAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1538–1552. doi: 10.1109/TAES.2019.2933958 [8] BERGER S D. Digital radio frequency memory linear range gate stealer spectrum[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 725–735. doi: 10.1109/TAES.2003.1207279 [9] FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958 [10] CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982 [11] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080 [12] 徐乐涛, 冯德军, 刘庆富, 等. 对逆合成孔径雷达的乘积调制干扰方法[J]. 电子学报, 2014, 42(12): 2501–2508. doi: 10.3969/j.issn.0372-2112.2014.12.024XU Letao, FENG Dejun, LIU Qingfu, et al. ISAR decoy generation by utilizing coherent multiplication modulated jamming[J]. Acta Electronica Sinica, 2014, 42(12): 2501–2508. doi: 10.3969/j.issn.0372-2112.2014.12.024 [13] 张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM波形的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti interrupted-sampling repeater jamming method based on stepped LFM waveform[J]. Systems Engineering and Electronics, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12 [14] 周畅, 范甘霖, 汤子跃, 等. 间歇采样转发干扰的关键参数估计[J]. 太赫兹科学与电子信息学报, 2019, 17(5): 782–787. doi: 10.11805/TKYDA201905.0782ZHOU Chang, FAN Ganlin, TANG Ziyue, et al. Parameter estimation of intermittent sampling repeater jamming[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(5): 782–787. doi: 10.11805/TKYDA201905.0782 [15] ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27(1): 1610–1614. doi: 10.1109/LSP.2020.3021667 [16] 周凯, 何峰, 粟毅. 一种快速抗间歇采样转发干扰波形和滤波器联合设计算法[J]. 雷达学报, 2022, 11(2): 264–277. doi: 10.12000/JR22015ZHOU Kai, HE Feng, and SU Yi. Fast algorithm for joint waveform and filter design against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 264–277. doi: 10.12000/JR22015 [17] WANG Fulai, PANG Chen, WU Hao, et al. Designing constant modulus complete complementary sequence with high Doppler tolerance for simultaneous polarimetric radar[J]. IEEE Signal Processing Letters, 2019, 26(12): 1837–1841. doi: 10.1109/LSP.2019.2949686 [18] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114. [19] 张建中, 穆贺强, 文树梁, 等. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法[J]. 电子与信息学报, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on LFM segmented pulse compression[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851