高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向B5G毫米波40~50 GHz通信的漫散射传播与去极化建模

廖希 陈心睿 王洋 任明浩 陈前斌

廖希, 陈心睿, 王洋, 任明浩, 陈前斌. 面向B5G毫米波40~50 GHz通信的漫散射传播与去极化建模[J]. 电子与信息学报. doi: 10.11999/JEIT230706
引用本文: 廖希, 陈心睿, 王洋, 任明浩, 陈前斌. 面向B5G毫米波40~50 GHz通信的漫散射传播与去极化建模[J]. 电子与信息学报. doi: 10.11999/JEIT230706
LIAO Xi, CHEN Xinrui, WANG Yang, REN Minghao, CHEN Qianbin. Research on Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230706
Citation: LIAO Xi, CHEN Xinrui, WANG Yang, REN Minghao, CHEN Qianbin. Research on Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230706

面向B5G毫米波40~50 GHz通信的漫散射传播与去极化建模

doi: 10.11999/JEIT230706
基金项目: 国家自然科学基金(62271095, 62171071), 重庆市自然科学基金(cstc2021jcyj-msxmX0634, CSTB2022NSCQ-MSX1125), 重庆市自然科学基金创新发展联合基金(CSTB2022NSCQ-LZX0073)
详细信息
    作者简介:

    廖希:女,博士,副教授,研究方向为毫米波太赫兹信道测量与建模、涡旋电磁波通信、通信感知一体化信道建模等

    陈心睿:女,硕士,研究方向为太赫兹信道测量与建模

    王洋:男,博士,教授,研究方向为毫米波太赫兹信道测量与建模、涡旋电磁波、智能反射面等

    任明浩:男,硕士,研究方向为毫米波信道测量与建模

    陈前斌:男,博士,教授,研究方向为5G/6G通信、智能网络、人工智能等

    通讯作者:

    王洋 wangyang@cqupt.edu.cn

  • 中图分类号: TN929.5

Research on Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz

Funds: The National Natural Science Foundation of China (62271095, 62171071), The Natural Science Foundation of Chongqing (cstc2021jcyjmsxmX0634, CSTB2022NSCQ-MSX1125), The Natural Science Foundation Innovation and Development Joint Fund Project of Chongqing under Grant (CSTB2022NSCQ-LZX0073)
  • 摘要: 漫散射传播与极化特性对于准确刻画、掌握毫米波信道传播机理,建立高精度毫米波通信信道模型至关重要。针对毫米波频段建筑材料粗糙面引起的漫散射传播和去极化特性表征不足,缺乏去极化理论模型的问题,提出一种基于有效粗糙度理论的漫散射去极化建模方法。从电磁波的极化维度分解粗糙面材料引起的漫散射辐射传播电场,引入去极化指数构建传播模型,利用40~50 GHz频段典型材料的实测数据,研究了功率角度谱、去极化指数和交叉极化鉴别比等漫散射传播及极化特性。结果表明,所提模型能够描述表面粗糙和光滑建筑材料的极化特性,去极化转化率分别高达40%和4%。
  • 图  1  漫散射传播示意图

    图  2  测量平台和被测材料表面

    图  3  天线辐射方向图

    图  4  地毯的射线追踪仿真结果

    图  5  20°入射角四种电波极化下的接收功率角度谱

    图  6  三种材料的去极化指数

    图  7  不同漫散射系数S下地毯的去极化指数(30°入射角)

    图  8  入射角30°下地毯的去极化指数误差

    图  9  45GHz频段20°入射角下地毯和岩石的XPD

    图  10  地毯在40~50 GHz频段内的XPD

    表  1  系统参数

    测量参数取值测量参数取值
    中心频率45 GHz天线类型喇叭天线
    频率带宽10 GHz天线极化水平/垂直极化
    扫频点数1001入射角10°/20°/30°
    频点间隔10 MHz接收角度间隔
    中频带宽2 kHz测量半径50 cm
    信号功率0 dBm收发天线高度60 cm
    下载: 导出CSV

    表  2  被测材料的几何尺寸和电磁特性参数

    测量材料花岗岩岩石地毯
    几何
    尺寸
    长 (cm)76.879.55147.3
    宽 (cm)42.080.95117.6
    高 (cm)1.521.881.08
    起伏
    高度
    表面高度标准差 (µm)0.36170.48990.89
    电磁特性参数[17]介电常数5.374.592.17
    电导率0.20.30.08
    下载: 导出CSV

    表  3  去极化指数最佳拟合误差

    参数 材料
    花岗岩 岩石 地毯
    S 0.33 0.52 0.58
    M 2.59% 21.46% 34.5%
    E 0.11 0.24 0.27
    下载: 导出CSV

    表  4  三种材料在不同入射角下的电波传播系数、平均交叉极化鉴别比和平均去极化指数

    入射角 材料
    花岗岩 岩石 地毯
    T R S MXPD M T R S MXPD M T R S MXPD M
    10° 0.31 0.91 0.28 –13.04 3% 0.55 0.65 0.52 –11.73 20% 0.63 0.61 0.48 –11.69 30%
    20° 0.36 0.88 0.31 –12.37 4% 0.48 0.68 0.55 –10.92 25% 0.72 0.43 0.55 –9.07 38%
    30° 0.54 0.75 0.38 –12.33 4% 0.43 0.71 0.55 –10.80 25% 0.70 0.39 0.6 –8.69 39%
    下载: 导出CSV
  • [1] MI Hang, AI Bo, HE Ruisi, et al. Multi-scenario millimeter wave wireless channel measurements and sparsity analysis[J]. China Communications, 2022, 19(11): 16–31. doi: 10.23919/JCC.2022.11.002.
    [2] ZHANG Hequn, ZHANG Yue, COSMAS J, et al. mmWave indoor channel measurement campaign for 5G new radio indoor broadcasting[J]. IEEE Transactions on Broadcasting, 2022, 68(2): 331–344. doi: 10.1109/TBC.2021.3131864.
    [3] PASIC F, SCHÜTZENHÖFER D, JIROUSEK E, et al. Comparison of Sub 6 GHz and mmWave wireless channel measurements at high speeds[C]. 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022: 1–5. doi: 10.23919/EuCAP53622.2022.9769375.
    [4] LI Zeyang, HU Haonan, ZHANG Jiliang, et al. Coverage analysis of multiple transmissive RIS-aided outdoor-to-indoor mmWave networks[J]. IEEE Transactions on Broadcasting, 2022, 68(4): 935–942. doi: 10.1109/TBC.2022.3196169.
    [5] ZELENBABA S, RAINER B, HOFER M, et al. Multi-node vehicular wireless channels: Measurements, large vehicle modeling, and hardware-in-the-loop evaluation[J]. IEEE Access, 2021, 9: 112439–112453. doi: 10.1109/ACCESS.2021.3100676.
    [6] PASIC F, PRATSCHNER S, LANGWIESER R, et al. High-mobility wireless channel measurements at 5.9 GHz in an urban environment[C]. 2022 International Balkan Conference on Communications and Networking (BalkanCom), Sarajevo, Bosnia and Herzegovina, 2022: 100–104. doi: 10.1109/BalkanCom55633.2022.9900633.
    [7] GURRIERI L E, WILLINK T J, PETOSA A, et al. Characterization of the angle, delay and polarization of multipath signals for indoor environments[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2710–2719. doi: 10.1109/TAP.2008.927507.
    [8] HARRINGTON R F. Field Computation by Moment Methods[M]. Piscataway: Wiley-IEEE Press, 1993.
    [9] YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693.
    [10] 廖珊. 基于FDTD的多层随机粗糙面散射场研究[D]. [硕士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.003214.

    LIAO Shan. Study on the scattering field of random rough surface based on FDTD[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.003214.
    [11] VITUCCI E M, MANI F, DEGLI-ESPOSTI V, et al. Polarimetric properties of diffuse scattering from building walls: Experimental parameterization of a ray-tracing model[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2961–2969. doi: 10.1109/TAP.2012.2194683.
    [12] GOULIANOS A A, FREIRE A L, BARRATT T, et al. Measurements and characterisation of surface scattering at 60 GHz[C]. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFall.2017.8288373.
    [13] FREIRE A L, PELHAM T, KONG Di, et al. Polarimetric diffuse scattering channel measurements at 26 GHz and 60 GHz[C]. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 2018: 210–214. doi: 10.1109/PIMRC.2018.8581035.
    [14] CUINAS I, SANCHEZ M G, and ALEJOS A V. Depolarization due to scattering on walls in the 5 GHz band[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1804–1812. doi: 10.1109/TAP.2009.2019694.
    [15] YANG Ying, CHEN Kunshan, YANG Xiaofeng, et al. Depolarized scattering of rough surface with dielectric inhomogeneity and spatial anisotropy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 47–59. doi: 10.1109/TGRS.2020.2999543.
    [16] BENEDETTO S and POGGIOLINI P. Theory of polarization shift keying modulation[J]. IEEE Transactions on Communications, 1992, 40(4): 708–721. doi: 10.1109/26.141426.
    [17] 罗健桂. 典型建筑材料在毫米波频段下的电磁特性研究[D]. [硕士论文], 重庆邮电大学, 2020. doi: 10.27675/d.cnki.gcydx.2020.000983.

    LUO Jiangui. Electromagnetic property of typical building materials at millimeter-wave band[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020. doi: 10.27675/d.cnki.gcydx.2020.000983.
    [18] 田海阔. 基于测量的毫米波漫散射传播模型参数化研究[D]. [硕士论文], 重庆邮电大学, 2020. doi: 10.27675/d.cnki.gcydx.2020.001049.

    TIAN Haikuo. Research on measurement based diffuse scattering propagation model parameterization at mmWave frequencies[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020. doi: 10.27675/d.cnki.gcydx.2020.001049.
    [19] ITU. ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz[S]. Geneva: ITU, 2015.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2024-04-15
  • 网络出版日期:  2024-05-04

目录

    /

    返回文章
    返回