高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间调制技术的可重构后向散射通信系统

倪刚 陈瑞华 贺冲 金荣洪

倪刚, 陈瑞华, 贺冲, 金荣洪. 基于时间调制技术的可重构后向散射通信系统[J]. 电子与信息学报, 2024, 46(6): 2443-2451. doi: 10.11999/JEIT230700
引用本文: 倪刚, 陈瑞华, 贺冲, 金荣洪. 基于时间调制技术的可重构后向散射通信系统[J]. 电子与信息学报, 2024, 46(6): 2443-2451. doi: 10.11999/JEIT230700
NI Gang, CHEN Ruihua, HE Chong, JIN Ronghong. Reconfigurable Backscattering Communication System Based on Time Modulation Technique[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2443-2451. doi: 10.11999/JEIT230700
Citation: NI Gang, CHEN Ruihua, HE Chong, JIN Ronghong. Reconfigurable Backscattering Communication System Based on Time Modulation Technique[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2443-2451. doi: 10.11999/JEIT230700

基于时间调制技术的可重构后向散射通信系统

doi: 10.11999/JEIT230700
基金项目: 国家科技创新2030行动计划(2022ZD0208601)
详细信息
    作者简介:

    倪刚:男,博士,研究方向为阵列信号处理、无线通信等

    陈瑞华:女,博士生,研究方向为微波电路设计、微波测量和阵列校准等

    贺冲:男,副教授,研究方向为阵列信号处理、相控阵技术和无线电测向与定位等

    金荣洪:男,教授,研究方向为现代天线技术、电磁计算方法、阵列信号处理、微波集成电路及相控阵天线等

    通讯作者:

    贺冲 hechong@sjtu.edu.cn

  • 中图分类号: TN926

Reconfigurable Backscattering Communication System Based on Time Modulation Technique

Funds: The National Science and Technology Innovation 2030 Major Project (2022ZD0208601)
  • 摘要: 近年来,时间调制阵列因其优越的矢量调控性能受到广泛关注。基于时间调制方法,该文提出一种可重构后向散射通信系统。该系统中后向散射节点将多类数字调制符号映射至控制信号波形的谐波分量中,以该波形控制后向散射节点对基站端来波的散射与吸收态;接收机采样后向散射信号并提取控制信号波形后,通过傅里叶变换计算谐波分量并恢复后向散射节点发射的数字调制符号。仿真结果验证了几种谐波解调方法的性能及与理论值的一致性。基于幅度、相位键控及正交振幅调制的可重构后向散射传输实验验证了所提系统和方法的可行性。相比较而言,该后向散射通信系统具有功耗低、结构简单、多类数字调制方式可重构的特点。
  • 图  1  基于吸收式SPST射频开关的后向散射天线结构

    图  2  基于时间调制技术的可重构后向散射通信结构

    图  3  两类不同$ t_{{\text{on}}}^{(l)} $与$ {\tau ^{(l)}} $参数下的控制波形

    图  4  8QAM码元符号位置与对应的时序参数

    图  5  基于谐波处理的接收机结构

    图  6  后向散射节点传输QPSK及16QAM调制码元时谐波接收机的误码率性能比较

    图  7  后向散射通信实验链路组成

    图  8  后向散射电路吸收态与反射态S11参数

    图  9  3种数字调制方式下的后向散射通信实验结果

    表  1  基于时间调制技术的后向散射系统与现有后向散射系统的对比

    文献 负载支路数 调制方式 负载阻抗校准 调制方式自适应
    [17] 2 BPSK 需要 ×
    [18] 4 4QAM 需要 有限
    本文 1 ASK/PSK/QAM等幅相数字调制方式 不需要
    下载: 导出CSV
  • [1] SHANKS H E and BICKMORE R W. Four-dimensional electromagnetic radiators[J]. Canadian Journal of Physics, 1959, 37(3): 263–275. doi: 10.1139/p59-031.
    [2] FARZANEH S and SEBAK A R. Microwave sampling beamformer: Prototype verification and switch design[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 36–44. doi: 10.1109/TMTT.2008.2009080.
    [3] YAO Amin, WU Wen, and FANG Dagang. Single-sideband time-modulated phased array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 1957–1968. doi: 10.1109/TAP.2015.2406890.
    [4] LI Haotian, CHEN Yikai, and YANG Shiwen. Harmonic beamforming in antenna array with time-modulated amplitude-phase weighting technique[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6461–6472. doi: 10.1109/TAP.2019.2922815.
    [5] NI Gang, HE Chong, GAO Yanchang, et al. High-efficiency modulation and harmonic beam scanning in time-modulated array[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 368–380. doi: 10.1109/TAP.2021.3119046.
    [6] NI Gang, HE Chong, and JIN Ronghong. An improved modulation module in time-modulated array[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(3): 561–565. doi: 10.1109/LAWP.2021.3138405.
    [7] 罗玉川, 向磊, 高彦昌, 等. 时间调制阵列天线的非理想波形调制研究[J]. 电波科学学报, 2022, 37(3): 388–393. doi: 10.12265/j.cjors.2021148.

    LUO Yuchuan, XIANG Lei, GAO Yanchang, et al. Research on non-ideal waveform modulation of time modulation array antenna[J]. Chinese Journal of Radio Science, 2022, 37(3): 388–393. doi: 10.12265/j.cjors.2021148.
    [8] 黎皓天, 陈益凯, 杨仕文. 2比特时间调制阵列的非理想特性建模研究[J]. 电波科学学报, 2022, 37(6): 925–932. doi: 10.12265/j.cjors.2022056.

    LI Haotian, CHEN Yikai, and YANG Shiwen. Modeling of nonideal characteristics in 2-bit time-modulated arrays[J]. Chinese Journal of Radio Science, 2022, 37(6): 925–932. doi: 10.12265/j.cjors.2022056.
    [9] ZHU Quanjiang, YANG Shiwen, YAO Ruilin, et al. Unified time- and frequency-domain study on time-modulated arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3069–3076. doi: 10.1109/TAP.2013.2253538.
    [10] MANEIRO-CATOIRA R, BRÉGAINS J C, GARCÍA-NAYA J A, et al. On the feasibility of time-modulated arrays for digital linear modulations: A theoretical analysis[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6114–6122. doi: 10.1109/TAP.2014.2365827.
    [11] ZHU Quanjiang, YANG Shiwen, YAO Ruilin, et al. Directional modulation based on 4-D antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 621–628. doi: 10.1109/TAP.2013.2290122.
    [12] CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Hybrid directional modulation and beamforming for physical layer security improvement through 4-D Antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5903–5912. doi: 10.1109/TAP.2021.3060056.
    [13] ROCCA P, ZHU Quanjiang, BEKELE E T, et al. 4-D arrays as enabling technology for cognitive radio systems[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(3): 1102–1116. doi: 10.1109/TAP.2013.2288109.
    [14] HE Chong, LIANG Xianling, ZHOU Bin, et al. Space-division multiple access based on time-modulated array[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 610–613. doi: 10.1109/LAWP.2014.2373431.
    [15] CHEN Qun, BAI Lin, HE Chong, et al. On the harmonic selection and performance verification in time-modulated array-based space division multiple access[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3244–3256. doi: 10.1109/TAP.2020.3037738.
    [16] SUDEVALAYAM S and KULKARNI P. Energy harvesting sensor nodes: Survey and implications[J]. IEEE Communications Surveys & Tutorials, 2011, 13(3): 443–461. doi: 10.1109/SURV.2011.060710.00094.
    [17] 张倩倩, 王俊, 梁应敞. 面向6G的共生散射通信技术: 原理、方法与应用[J]. 中国科学:信息科学, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.

    ZHANG Qianqian, WANG Jun, and LIANG Yingchang. Symbiotic backscatter communications for 6G: Principles, approaches, and applications[J]. SCIENTIA SINICA Informationis, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.
    [18] THOMAS S J, WHEELER E, TEIZER J, et al. Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4): 1175–1182. doi: 10.1109/TMTT.2012.2185810.
    [19] CHO K and YOON D. On the general BER expression of one- and two-dimensional amplitude modulations[J]. IEEE Transactions on Communications, 2002, 50(7): 1074–1080. doi: 10.1109/TCOMM.2002.800818.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  115
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2024-01-21
  • 网络出版日期:  2024-02-27
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回