高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于有限内存拟牛顿法的混合波束成形算法

严军荣 江沛莲 李沛

严军荣, 江沛莲, 李沛. 一种基于有限内存拟牛顿法的混合波束成形算法[J]. 电子与信息学报, 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656
引用本文: 严军荣, 江沛莲, 李沛. 一种基于有限内存拟牛顿法的混合波束成形算法[J]. 电子与信息学报, 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656
YAN Junrong, JIANG Peilian, LI Pei. A Hybrid Beamforming Algorithm Based on Limited-Broyden-Fletcher-Goldfarb-Shanno[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656
Citation: YAN Junrong, JIANG Peilian, LI Pei. A Hybrid Beamforming Algorithm Based on Limited-Broyden-Fletcher-Goldfarb-Shanno[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2542-2548. doi: 10.11999/JEIT230656

一种基于有限内存拟牛顿法的混合波束成形算法

doi: 10.11999/JEIT230656
基金项目: 国家自然科学基金(U21A20450, 62301204)
详细信息
    作者简介:

    严军荣:男,讲师,研究方向为无线通信网络、软件定义网络、视觉目标跟踪等

    江沛莲:女,硕士生,研究方向为无线电通信系统、毫米波大规模MIMO系统中的预编码技术

    李沛:女,讲师,研究方向为多波束传输、空间资源优化、延时感知节能方案等

    通讯作者:

    严军荣 yjrcn@163.com

  • 中图分类号: TN929.5

A Hybrid Beamforming Algorithm Based on Limited-Broyden-Fletcher-Goldfarb-Shanno

Funds: The National Natural Science Foundation of China (U21A20450, 62301204)
  • 摘要: 针对现有混合波束成形算法运行时间长、频谱效率低、误码率高的问题,该文提出一种基于有限内存拟牛顿法的混合波束成形算法(LBFGS)。该算法首先通过数字预编码器的最小二乘解构建单变量目标函数;然后采用目标函数的梯度近似黑塞矩阵的逆得到搜索方向并沿搜索方向更新模拟预编码器,直到满足停止条件;最后固定模拟预编码器得到数字预编码器。MATLAB仿真结果表明,LBFGS算法较现有MO算法减少了28%的运行时间,频谱效率提高了1.05%,误码率降低了1.06%。
  • 图  1  点对点毫米波混合波束成形系统

    图  2  不同波束成形算法的内部循环总次数随信噪比变化曲线

    图  3  不同波束成形算法的运行时间随信噪比的变化曲线

    图  4  不同波束成形算法的频谱效率随信噪比的变化曲线

    图  5  不同波束成形算法的误码率随信噪比的变化曲线

    算法1 计算搜索方向
     输入:${\gamma _0}{\text{ = }}1$,${\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{{\boldsymbol{v}}_k}}}$,已存储的梯度向量
     $ \{ {\boldsymbol{s}}_i^{(k)},{\boldsymbol{y}}_i^{(k)}\} _{i = k - m}^{k - 1} $
     输出: 搜索方向${{\boldsymbol{\eta}} _k}$
     ${\boldsymbol{\mathcal{H}}}_k^0 = {\gamma _k}$;
     $ {\boldsymbol{d}} \leftarrow {\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{v_k}}} $;
     If $m \ne 0$
      for $i = k - 1,k - 2, \cdots ,k - m$do
       ${\boldsymbol{\alpha}} \leftarrow {\rho _i} < {\boldsymbol{s}}_i^{(k)},{\boldsymbol{d}} > $
       ${\boldsymbol{d}} \leftarrow {\boldsymbol{d}} - {\alpha _i}{\boldsymbol{y}}_i^{(k)}$
      end for
      ${\boldsymbol{e}} \leftarrow {\boldsymbol{\mathcal{H}}}_k^0{\boldsymbol{d}}$
      for $i = k - m,k - m + 1, \cdots ,k - 1$
       $\beta \leftarrow {\rho _i} < {\boldsymbol{y}}_i^{(k)},{\boldsymbol{e}} > $
       $ {\boldsymbol{e}} \leftarrow {\boldsymbol{e}} + {\boldsymbol{s}}_i^{(k)} < {\varepsilon _i} - \beta > $
       end for
       ${{\boldsymbol{\eta}} _k} = - {\boldsymbol{e}}$
     else
      ${{\boldsymbol{\eta}} _k} = - {\boldsymbol{\mathcal{H}}}_k^0{\boldsymbol{d}}$
     end if
    下载: 导出CSV
    算法2 基于有限内存拟牛顿法的模拟预编码器算法
     输入:最优全数字矩阵${{\boldsymbol{V}}_{\rm{opt}}}$,初始模拟波束成形矩阵${\boldsymbol{V}}_{\rm{RF}}^0$,内存
     容量$\forall M \in \mathbb{Z}$且$M > 0$。
     输出:${{\boldsymbol{V}}_{\rm{RF}}}$
     初始化:内部循环次数$k = 0$,内存占用量$m = 0$
     根据式(10)计算黎曼梯度${\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{{\boldsymbol{v}}_0}}}$
     while梯度的范数达到阈值${\mu _2}$
      根据算法1计算搜索方向${{\boldsymbol{\eta}} _k}$
      线搜索并回缩得到${{\boldsymbol{v}}_{k + 1}}{\text{ = }}{{{R}}_{{{\boldsymbol{v}}_k}}}({\alpha _k}{{\boldsymbol{\eta}} _k})$
      计算黎曼梯度${\mathrm{grad}}{{\boldsymbol{\mathcal{J}}}_{{{\boldsymbol{v}}_{k + 1}}}}$
      计算$ {\boldsymbol{s}}_k^{(k + 1)} $,$ {\boldsymbol{y}}_k^{(k + 1)} $,${\rho _{k + 1}} = 1/ < {\boldsymbol{s}}_k^{(k + 1)},{\boldsymbol{y}}_k^{(k + 1)} > $
      if 满足存储条件
       计算${\gamma _{k + 1}} = < {\boldsymbol{s}}_k^{(k + 1)},{\boldsymbol{y}}_k^{(k + 1)} > /||{\boldsymbol{y}}_k^{(k + 1)}|{|^2}$
       if溢出
        丢弃$ {\boldsymbol{s}}_{k - M}^{(k)} $,$ {\boldsymbol{y}}_{k - M}^{(k)} $;
       end if
       历史梯度向量传输
       存储$ {\text{\{ }}{\boldsymbol{s}}_k^{(k + 1)},{\boldsymbol{y}}_k^{(k + 1)}{\text{\} }} $
       若$m < M$,那么$m = m + 1$,否则$m = M$
      else
       ${\gamma _{k + 1}} = {\gamma _k}$;
      end if
      $k \leftarrow k + 1$
     end
    下载: 导出CSV
  • [1] SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
    [2] ZHANG Jun, YU Xianghao, and LETAIEF K B. Hybrid beamforming for 5G and beyond millimeter-wave systems: A holistic view[J]. IEEE Open Journal of the Communications Society, 2020, 1: 77–91. doi: 10.1109/OJCOMS.2019.2959595.
    [3] ABDULLAH Q, SALH A, MOHDSHAH N S, et al. A brief survey and investigation of hybrid beamforming for millimeter waves in 5G massive MIMO systems[J]. arXiv: 2105.00180, 2021. doi: 10.48550/arXiv.2105.00180.
    [4] RIHAN M, SOLIMAN T A, XU Chen, et al. Taxonomy and performance evaluation of hybrid beamforming for 5G and beyond systems[J]. IEEE Access, 2020, 8: 74605–74626. doi: 10.1109/ACCESS.2020.2984548.
    [5] UWAECHIA A N and MAHYUDDIN N M. A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: feasibility and challenges[J]. IEEE Access, 2020, 8: 62367–62414. doi: 10.1109/ACCESS.2020.2984204.
    [6] ULLAH M S, SARKER S C, ASHRAF Z B, et al. Spectral efficiency of multiuser massive MIMO-OFDM THz wireless systems with hybrid beamforming under inter-carrier interference[C]. Proceedings of the 12th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 2022: 228–231. doi: 10.1109/ICECE57408.2022.10089136.
    [7] LIU Ying and WANG Jintao. Low-complexity OFDM-based hybrid precoding for multiuser massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(3): 263–266. doi: 10.1109/lwc.2019.2929518.
    [8] ZHAO Xingyu, LIN Tian, ZHU Yu, et al. Partially-connected hybrid beamforming for spectral efficiency maximization via a weighted MMSE equivalence[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8218–8232. doi: 10.1109/TWC.2021.3091524.
    [9] 赵峰, 何晓华. 混合动态连接结构的多用户多流混合预编码[J]. 电子与信息学报, 2021, 43(9): 2647–2653. doi: 10.11999/JEIT 200441.

    ZHAO Feng and HE Xiaohua. Multi-user multi-stream hybrid precoding with hybrid dynamic connection structure[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2647–2653. doi: 10.11999/JEIT 200441.
    [10] AYACH O E, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846.
    [11] YU Xianghao, SHEN J C, ZHANG Jun, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 485–500. doi: 10.1109/JSTSP.2016.2523903.
    [12] JIN Juening, ZHENG Y R, CHEN Wen, et al. Hybrid precoding for millimeter wave MIMO systems: A matrix factorization approach[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 3327–3339. doi: 10.48550/arXiv.2003.11972.
    [13] LI Jinmeng, CHENG Zhiqun, and LI Hang. Hybrid precoding scheme in millimeter wave massive MIMO based on stochastic gradient descent[C]. Proceedings of 2021 IEEE Asia Conference on Information Engineering (ACIE), Sanya, China, 2021: 22–26. doi: 10.1109/ACIE51979.2021.9381072.
    [14] 刘文龙, 黄雯静, 王本巍, 等. 毫米波单用户多天线系统的混合预编码设计[J]. 电子与信息学报, 2022, 44(2): 620–626. doi: 10.11999/JEIT202019.

    LIU Wenlong, HUANG Wenjing, WANG Benwei, et al. Hybrid precoding design in millimeter wave single-user large-scale multiple-input multiple-output system[J]. Journal of Electronics & Information Technology, 2022, 44(2): 620–626. doi: 10.11999/JEIT202019.
    [15] HUANG Wen. Optimization algorithms on Riemannian manifolds with applications[D]. [Ph. D. dissertation], Florida State University, 2013.
    [16] ZANG Guangda, HU Lingna, YANG Feng, et al. Partially-connected hybrid beamforming for multi-user massive MIMO systems[J]. IEEE Access, 2020, 8: 215287–215298. doi: 10.1109/ACCESS.2020.3040508.
    [17] SONG Nuan, YANG Tao, and SUN Huan. Overlapped subarray based hybrid beamforming for millimeter wave multiuser massive MIMO[J]. IEEE Signal Processing Letters, 2017, 24(5): 550–554. doi: 10.1109/LSP.2017.268 1689.
    [18] BOUMAL N. An Introduction to Optimization on Smooth Manifolds[M]. Cambridge: Cambridge University Press, 2023: 5–151. doi: 10.1017/9781009166164.
    [19] KASAI H. Fast optimization algorithm on complex oblique manifold for hybrid precoding in millimeter wave MIMO systems[C]. Proceedings of 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, USA, 2018: 1266–1270. doi: 10.1109/GlobalSIP.2018.8646553.
    [20] LIN Tian, CONG Jiaqi, ZHU Yu, et al. Hybrid beamforming for millimeter wave systems using the MMSE criterion[J]. IEEE Transactions on Communications, 2019, 67(5): 3693–3708. doi: 10.1109/TCOMM.2019.2893632.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  174
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-11-13
  • 录用日期:  2023-11-14
  • 网络出版日期:  2023-11-21
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回