高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种计及风险偏好的计算卸载激励远期合同

张碧玲 焦正阳 刘家华 郭彩丽

张碧玲, 焦正阳, 刘家华, 郭彩丽. 一种计及风险偏好的计算卸载激励远期合同[J]. 电子与信息学报. doi: 10.11999/JEIT230617
引用本文: 张碧玲, 焦正阳, 刘家华, 郭彩丽. 一种计及风险偏好的计算卸载激励远期合同[J]. 电子与信息学报. doi: 10.11999/JEIT230617
ZHANG Biling, JIAO Zhengyang, LIU Jiahua, GUO Caili. A Computational Offloading Incentive Forward Contract Taking into Account Risk Appetite[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230617
Citation: ZHANG Biling, JIAO Zhengyang, LIU Jiahua, GUO Caili. A Computational Offloading Incentive Forward Contract Taking into Account Risk Appetite[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230617

一种计及风险偏好的计算卸载激励远期合同

doi: 10.11999/JEIT230617
基金项目: 国家自然科学基金(62171060)
详细信息
    作者简介:

    张碧玲:女,教授,博士生导师。研究方向为无线通信网络,物联网,能源互联网,合同理论及其应用

    焦正阳:男,硕士生,研究方向为能源互联网、合同理论、信息系统及其应用

    刘家华:男,硕士生,研究方向为能源互联网、合同理论、信息系统及其应用

    郭彩丽:女,教授,博士生导师。研究方向为无线移动通信技术等

    通讯作者:

    张碧玲 bilingzhang@bupt.edu.cn

  • 中图分类号: TN919

A Computational Offloading Incentive Forward Contract Taking into Account Risk Appetite

Funds: The National Natural Science Foundation of China (62171060)
  • 摘要: 边缘计算网络中,为了激励边缘计算节点(ECNs)参与计算卸载,以缓解计算服务供应商(SP)的计算压力,研究面向远期交易的激励机制。考虑到SP与ECNs之间的信息不对称,且ECN闲置计算资源的不确定性易导致合作风险,基于合同理论,提出一种计及风险偏好的计算卸载远期合同激励机制。首先,建立节点风险偏好模型;接着,定义个人理性(IR)约束和激励相容(IC)约束,将激励问题建模为最大化SP收益的远期合同设计问题;最后,化简约束并求解最优远期合同。仿真结果验证了所设计的远期合同的可行性和合理性,并证明该合同能有效激励ECNs参与计算卸载,提升了SP的收益。
  • 图  1  计算卸载的远期交易场景

    图  2  远期合同的可行性

    图  3  远期合同的单调性

    图  4  不同激励机制下SP的期望收益

    表  1  基本仿真参数设置[18]

    仿真参数 参数值 仿真参数 参数值
    ECNs的
    个数$ {N_{\text{c}}} $
    60 ECNs类型
    个数$ K $
    12
    设备占用
    权重因子$ {\mu ^{\text{t}}} $
    0.05 单位数据的计算量$ g $ (cycle/Byte) 5

    能耗权重因子$ {\mu ^{\text{e}}} $
    0.0003 开关电容
    效率因子$ \kappa $
    $ 1.2 \times {10^{ - 11}} $
    惩罚因子$ a $ 0.01 SP任务收益 $ h $ (/Byte) 0.7
    风险偏好$ {r_k} $ $ {r_k} = 0.4 + \dfrac{{0.9 + 0.4 \times k}}{{12}} $ 收益因子$ \varepsilon $ 10
    下载: 导出CSV
  • [1] CHEN Jie, ZHANG Lin, LIANG Yingchang, et al. Resource allocation for wireless-powered IoT networks with short packet communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1447–1461. doi: 10.1109/TWC.2019.2893335.
    [2] ZHOU Zhenyu, GAO Caixia, XU Chen, et al. Social big-data-based content dissemination in internet of vehicles[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 768–777. doi: 10.1109/TII.2017.2733001.
    [3] SU Chunxia, Ye Fang, LIU Tingting, et al. Computation offloading in hierarchical multi-access edge computing based on contract theory and Bayesian matching game[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13686–13701. doi: 10.1109/TVT.2020.3022766.
    [4] YANG Chao, LOU Wei, LIU Yi, et al. Resource allocation for edge computing-based vehicle platoon on freeway: a contract-optimization approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15988–16000. doi: 10.1109/TVT.2020.3039851.
    [5] ZHAO Junhui, KONG Ming, LI Qiuping, et al. Contract-based computing resource management via deep reinforcement learning in vehicular fog computing[J]. IEEE Access, 2020, 8: 3319–3329. doi: 10.1109/ACCESS.2019.2963051.
    [6] HUANG Xumin, YU Rong, YE Dongdong, et al. Efficient workload allocation and user-centric utility maximization for task scheduling in collaborative vehicular edge computing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3773–3787. doi: 10.1109/TVT.2021.3064426.
    [7] DRESSLER F, HANDLE P, and SOMMER C. Towards a vehicular cloud-using parked vehicles as a temporary network and storage infrastructure[C]. Proceedings of the 2014 ACM International Workshop on Wireless and Mobile Technologies for Smart Cities, Philadelphia, USA, 2014: 11–18. doi: 10.1145/2633661.2633671.
    [8] KIM N, KIM D, LEE J, et al. Incentive-based coded distributed computing management for latency reduction in IoT services—a game theoretic approach[J]. IEEE Internet of Things Journal, 2021, 8(10): 8259–8278. doi: 10.1109/JIOT.2020.3045277.
    [9] LIU Yang, XU Changqiao, ZHAN Yufeng, et al. Incentive mechanism for computation offloading using edge computing: a stackelberg game approach[J]. Computer Networks, 2017, 129: 399–409. doi: 10.1016/j.comnet.2017.03.015.
    [10] ALGARVIO H. Risk-sharing contracts and risk management of bilateral contracting in electricity markets[J]. International Journal of Electrical Power & Energy Systems, 2023, 144: 108579. doi: 10.1016/j.ijepes.2022.108579.
    [11] AN Xuming, FAN Rongfei, HU Han, et al. Joint task offloading and resource allocation for IoT edge computing with sequential task dependency[J]. IEEE Internet of Things Journal, 2022, 9(17): 16546–16561. doi: 10.1109/JIOT.2022.3150976.
    [12] LI Yuwei, YANG Bo, WU Hao, et al. Joint offloading decision and resource allocation for vehicular fog-edge computing networks: A contract-stackelberg approach[J]. IEEE Internet of Things Journal, 2022, 9(17): 15969–15982. doi: 10.1109/JIOT.2022.3150955.
    [13] EDERINGTON L H. The hedging performance of the new futures markets[J]. The Journal of Finance, 1979, 34(1): 157–170. doi: 10.2307/2327150.
    [14] ZHANG Biling, LIU Jiahua, WANG Min, et al. Long-term contracts with dynamic asymmetric information for traffic offloading in heterogeneous 5G and beyond networks[J]. IEEE Internet of Things Journal, 2023, 10(4): 3440–3452. doi: 10.1109/JIOT.2022.3225237.
    [15] LIWANG Minghui, GAO Zhibin, and WANG Xianbin. Let’s trade in the future! A futures-enabled fast resource trading mechanism in edge computing-assisted UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3252–3270. doi: 10.1109/JSAC.2021.3088657.
    [16] BOLTON P and DEWATRIPONT M. Contract Theory[M]. Cambridge: The MIT Press, 2004: 77–81.
    [17] JEMBER A G, XU Wenhe, PAN Chao, et al. Game and contract theory-based energy transaction management for internet of electric vehicle[J]. IEEE Access, 2020, 8: 203478–203487. doi: 10.1109/ACCESS.2020.3036415.
    [18] LI Zhenjiang, CHEN Cheng, and WANG Kai. Cloud computing for agent-based urban transportation systems[J]. IEEE Intelligent Systems, 2011, 26(1): 73–79. doi: 10.1109/MIS.2011.10.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2024-04-29
  • 网络出版日期:  2024-05-15

目录

    /

    返回文章
    返回