高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模数混合子带划分的信号重构建模分析与优化

王泽 何方敏 卢洽然 张雲硕 孟进 李亚星

王泽, 何方敏, 卢洽然, 张雲硕, 孟进, 李亚星. 基于模数混合子带划分的信号重构建模分析与优化[J]. 电子与信息学报, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593
引用本文: 王泽, 何方敏, 卢洽然, 张雲硕, 孟进, 李亚星. 基于模数混合子带划分的信号重构建模分析与优化[J]. 电子与信息学报, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593
WANG Ze, HE Fangmin, LU Qiaran, ZHANG Yunshuo, MENG Jin, LI Yaxing. Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593
Citation: WANG Ze, HE Fangmin, LU Qiaran, ZHANG Yunshuo, MENG Jin, LI Yaxing. Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593

基于模数混合子带划分的信号重构建模分析与优化

doi: 10.11999/JEIT230593
基金项目: 国家重点研发计划(2021YFF1500100),国家自然科学基金(52177012),国家杰出青年科学基金(52025072),国防科技重点实验室基金(614221722051301)
详细信息
    作者简介:

    王泽:男,博士生,研究方向为通信抗干扰、干扰对消、信道化接收

    何方敏:男,博士,研究员,研究方向为电磁兼容、干扰对消、信号处理

    卢洽然:男,博士生,研究方向为通信抗干扰建模与机理研究

    张雲硕:男,博士生,研究方向为非合作干扰对消算法建模与性能分析

    孟进:男,博士,研究员,研究方向为舰船系统电磁兼容理论、电磁干扰防护技术、电磁脉冲技术

    李亚星:男,博士生,研究方向为感知与通信一体化

    通讯作者:

    李亚星  whhit173@hotmail.com

  • 中图分类号: TN975

Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division

Funds: The National Key R&D Program of China (2021YFF1500100), The National Natural Science Foundation of China (52177012), The National Science Fund for Distinguished Young Scholars (52025072), The National Defence Science and Technology Key Laboratory Found (614221722051301)
  • 摘要: 为了应对宽带阻塞式干扰,通信干扰对消系统通常应用基于子带划分的干扰对消技术来提升宽带干扰抑制能力,同时为了兼顾通信性能,将子带信号重构恢复为通信信号,保障通信质量。该文采用模拟电路与数字处理相结合的方式,搭建了子带划分与信号重构框架,通过模拟滤波器实现第1级宽滤波,减小信号处理带宽,利用数字滤波器完成第2级窄滤波,进一步提高信号信噪比。针对通信信号在子带划分过程中,存在跨子带重构失真的问题,建立了子带划分与信号重构系统时频域模型,分析子带间幅相不一致对信号重构的影响。为了解决重构信号的幅相不一致问题,提出了相位校准方法与滤波器幅频优化方法,从幅度和相位两方面同时保证跨子带信号的近似无失真重构。仿真与实验结果表明,该文所设计的滤波器幅频响应具有良好的重构精度,并且解决了跨子带信号重构的相位失真问题,有效降低了重构通信信号的误码率。
  • 图  1  宽频带通信干扰对消系统框图

    图  2  信号重构数学模型框图

    图  3  模拟子带与数字子带的划分方式示意图

    图  4  原型滤波器归一化功率谱

    图  5  模拟子带与数字子带频带划分图

    图  6  滤波器幅频响应重构误差

    图  7  重构误差随滤波器划分子带数的变化曲线

    图  8  重构信号相位优化前后的频谱对比

    图  9  不同相位失真程度的MSK重构信号时域波形误差

    图  10  MSK重构信号的误码率曲线(校准前、后)

    图  11  宽带信号注入的实验场景图

    图  12  重构信号优化前后频谱对比

    算法1 相位校准方法
     目的:求解相位补偿量,配平相邻子带的相位
     输入:校准信号
     输出:相位补偿项
     步骤:
     (1) 令 $ i = 1 $;
     (2) 子带 $ i $的中心频点为 $ {f_i} $,相邻子带 $ i + 1 $的中心频点为 $ {f_{i + 1}} $,产生一个频率为 $ {f_0} = ({f_i} + {f_{i + 1}})/2 $的校准信号,即校准信号既可以划分
     到子带 $ i $,又可以划分到子带 $ i + 1 $;
     (3) 将校准信号注入到射频调理电路前端,进入子带划分与信号重构链路;
     (4) 在信号合成前,通过快速傅里叶变换得到子带 $ i $与 $ i + 1 $的校准信号频谱;
     (5) 抽取频谱中频率为 $ {f_0} $的复数分量,计算其相位 $ {\varphi _i} $, $ {\varphi _{i + 1}} $,作差后得到相邻子带的相位差 $ \Delta \varphi = {\varphi _{i + 1}} - {\varphi _i} $;
     (6) 计算出相位补偿量 $ {{\text{e}}^{{\text{j}}\Delta \varphi }} $配平 $ i + 1 $子带的相移;
     (7) 令 $ i = i + 1 $;
     (8) 重复步骤(2)~(7),直到 $ i = K \times M - 1 $(其中 $ K $为模拟子带数, $ M $为每个模拟子带中包含的数字子带数)。
    下载: 导出CSV

    表  1  预选滤波器组通带范围与中心频率(MHz)

    预选滤波器组 预选滤波器① 预选滤波器② 预选滤波器③ 预选滤波器④
    起始频率 458 498 538 578
    截止频率 502 542 582 622
    中心频率 480 520 560 600
    下载: 导出CSV

    表  2  重构误差对比(全频带460~620 MHz)(dB)

    原型滤波器 重构均方误差 重构最大误差
    文献[27] 0.002 6 0.28
    文献[30] 0.001 5 0.17
    本文优化方法 0.000 1 0.04
    下载: 导出CSV
  • [1] CHENG C H and JAMES T S. An Introduction to Electronic Warfare; from the First Jamming to Machine Learning Techniques[M]. New York, USA: River Publishers, 2021: 97–101.
    [2] TEGLER J. Electronic warfare[J]. National Defense, 2022, 17(4): 107–109.
    [3] ZHANG Yongshun and JIA Xin. Adaptive interference suppression for DSSS communications based on compressive sensing[J]. International Journal of Communication Systems, 2018, 31(11): e3699. doi: 10.1002/dac.3699
    [4] ZHANG Xiaolu, QUAN Houde, CUI Peizhang, et al. Simulation and analysis of frequency hopping communication jamming[J]. Journal of Physics:Conference Series, 2020, 1550: 052025. doi: 10.1088/1742-6596/1550/5/052025
    [5] CHEN Xin, LI Xin, WU Weiyi, et al. Simulation and analysis of anti-jamming performance of frequency hopping communication system[J]. SPIE, 2020, 1606: 1160619.
    [6] GIUSTINIANO D, SCHALCH M, LIECHTI M, et al. Interference suppression in bandwidth hopping spread spectrum communications[C]. The 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Stockholm, Sweden, 2018: 134–143.
    [7] 孟进, 何方敏, 李亚星, 等. L波段高速跳频数据链非合作干扰对消装置及方法[P]. 中国专利, 114513228B, 2022.

    MENG Jin, HE Fangmin, LI Yaxing, et al. L-band high-speed frequency hopping data link non cooperative interference cancellation device and method[P]. China Patent, 114513228B, 2022.
    [8] WU Renbiao, HUANG Jianyu, ZHANG Chuntian, et al. An adaptive receiver for constant modulus signal interference suppression in civil aviation air- ground communication[C]. 2007 Asia-Pacific Conference on Communications, Bangkok, Thailand, 2022: 487–489.
    [9] 孟进, 王青, 何方敏, 等. Ku和Ka双频段卫通地面站的多频点干扰对消装置及方法[P]. 中国专利, 113922889B, 2022.

    MENG Jin, WANG Qing, HE Fangmin, et al. Multi frequency interference cancellation device and method for Ku and Ka dual band SATCOM ground stations[P]. China Patent, 113922889B, 2022.
    [10] 孟进, 李亚星, 葛松虎, 等. 超短波电台干扰防护装置[P]. 中国专利, 113438035B, 2021.

    MENG Jin, LI Yaxing, GE Songhu, et al. Interference protection device for ultrashort wave radio[P]. China Patent, 113438035B, 2021.
    [11] ZHANG Yunshuo, HE Fangmin, LU Qiaran, et al. Wideband adaptive interference cancellation in spread-spectrum communication with subband bandwidth design[C]. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Chengdu, China, 2022: 347–351.
    [12] YANG Xiaopeng, LI Shuai, LIU Quanhua, et al. Robust wideband adaptive beamforming based on focusing transformation and steering vector compensation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2280–2284. doi: 10.1109/LAWP.2020.3029950
    [13] CHEN Xinzhu, SHU Ting, YU K B, et al. Implementation of an adaptive wideband digital array radar processor using subbanding for enhanced jamming cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 762–775. doi: 10.1109/TAES.2020.3042764
    [14] ZHANG Wenxu, YAO Yushuang, ZHAO Zhongkai, et al. Design and FPGA implementation of a novel efficient FRM-based channelized receiver structure[J]. IEEE Access, 2019, 7: 114778–114787. doi: 10.1109/ACCESS.2019.2935562
    [15] MURTHY C S and SRIDEVI K. Optimized DA-reconfigurable FIR filters for software defined radio channelizer applications[J]. Circuit World, 2021, 47(3): 252–261. doi: 10.1108/CW-11-2020-0332
    [16] SU Yu. Design of a narrow transition band dynamic digital channelized receiver without merging adjacent sub-channels[C]. The 4th International Seminar on Computer Technology, Mechanical and Electrical Engineering, Chengdu, China, 2020: 042044.
    [17] TIAN Rujun. Investigation of radio signal reconnaissance based on intermediate frequency channel receiver[C]. The 4th International Conference on Computer, Civil Engineering and Mechatronics, Sanya, China, 2021: 378–386.
    [18] ZHANG Wenxu, ZHANG Chunguang, ZHAO Zhongkai, et al. Low-complexity channelizer based on FRM for passive radar multi-channel wideband receiver[J]. Circuits,Systems,and Signal Processing, 2020, 39(1): 420–438. doi: 10.1007/s00034-019-01192-0
    [19] HRISTOVA V and CHERNEVA G. Coherent formation and receiving of frequency hopping spread spectrum signals[J]. SPIE, 2020: 1524: 115241K.
    [20] NGUYEN T Q and VAIDYANATHAN P P. Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1989, 37(5): 676–690. doi: 10.1109/29.17560
    [21] 赵亮, 金梁, 刘双平, 等. 基于Dechirp和多相滤波结构的超宽带通信系统[J]. 电子与信息学报, 2011, 33(11): 2582–2587. doi: 10.3724/SP.J.1146.2011.00309

    ZHAO Liang, JIN Liang, LIU Shuangping, et al. Ultra wideband communication system based on Dechirp and polyphase filter structure[J]. Journal of Electronics&Information Technology, 2011, 33(11): 2582–2587. doi: 10.3724/SP.J.1146.2011.00309
    [22] 张超, 马宏, 焦义文. 具有重构特性的原型滤波器的设计[J]. 雷达科学与技术, 2019, 17(3): 335–338,344. doi: 10.3969/j.issn.1672-2337.2019.03.016

    ZHANG Chao, MA Hong, and JIAO Yiwen. Design of a prototype filter with reconstruction characteristics[J]. Radar Science and Technology, 2019, 17(3): 335–338,344. doi: 10.3969/j.issn.1672-2337.2019.03.016
    [23] LIU Hongying, YI Caixia, and YANG Zhiming. Design perfect reconstruction cosine-modulated filter banks via quadratically constrained quadratic programming and least squares optimization[J]. Signal Processing, 2017, 141: 199–203. doi: 10.1016/j.sigpro.2017.06.009
    [24] SHAEEN K and ELIAS E. Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks - a review[J]. Journal of Signal Processing Systems, 2015, 81(2): 183–195. doi: 10.1007/s11265-014-0929-5
    [25] 蒋俊正, 江庆, 欧阳缮. 一种设计近似完全重构非均匀余弦调制滤波器组的新算法[J]. 电子与信息学报, 2016, 38(9): 2385–2390. doi: 10.11999/JEIT151260

    JIANG Junzheng, JIANG Qing, and OUYANG Shan. Novel method for designing near-perfect-reconstruction nonuniform cosine modulated filter banks[J]. Journal of Electronics&Information Technology, 2016, 38(9): 2385–2390. doi: 10.11999/JEIT151260
    [26] CRUZ-ROLDAN F, MARTIN-MARTIN P, SAEZ-LANDETE J, et al. A fast windowing-based technique exploiting spline functions for designing modulated filter banks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2009, 56(1): 168–178. doi: 10.1109/TCSI.2008.925350
    [27] 周芳, 水鹏朗. 基于相位调制的非均匀DFT调制滤波器组的构造算法[J]. 电子与信息学报, 2017, 39(9): 2169–2174. doi: 10.11999/JEIT170040

    ZHOU Fang and SHUI Penglang. Construction of nonuniform DFT modulated filter banks via phase modulation[J]. Journal of Electronics&Information Technology, 2017, 39(9): 2169–2174. doi: 10.11999/JEIT170040
    [28] KHA H H, TUAN H D, and NGUYEN T Q. Efficient design of cosine-modulated filter banks via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 966–976. doi: 10.1109/TSP.2008.2009268
    [29] KANG A S and VIG R. Performance analysis of near perfect reconstruction filter bank in cognitive radio environment[J]. International Journal of Advanced Networking and Applications, 2016, 8(3): 3070–3083.
    [30] 焦义文, 马宏, 刘燕都, 等. 天线组阵频域合成方法最佳子带划分数分析[J]. 系统工程与电子技术, 2020, 42(10): 2156–2163. doi: 10.3969/j.issn.1001-506X.2020.10.02

    JIAO Yiwen, MA Hong, LIU Yandu, et al. Analysis on the optimal sub-band partition number in frequency domain combining for antenna arraying[J]. Systems Engineering and Electronics, 2020, 42(10): 2156–2163. doi: 10.3969/j.issn.1001-506X.2020.10.02
    [31] 张文旭, 崔鑫磊, 陆满君. 一种基于MMF-FRM的低复杂度信道化接收机结构[J]. 电子学报, 2023, 51(3): 720–727. doi: 10.12263/DZXB.20210763

    ZHANG Wenxu, CUI Xinlei, and LU Manjun. A low complexity channelized receiver structure based on MMF-FRM[J]. Acta Electronica Sinica, 2023, 51(3): 720–727. doi: 10.12263/DZXB.20210763
    [32] 赵廷刚, 王杰, 莘济豪, 等. 基于信道化架构的宽带I/Q不平衡校准技术[J]. 雷达科学与技术, 2023, 21(2): 199– 207, 214. doi: 10.3969/j.issn.1672-2337.2023.02.011

    ZHAO Tinggang, WANG Jie, SHEN Jihao, et al. Wideband I/Q imbalance calibration technique based on channelized architecture[J]. Radar Science and Technology, 2023, 21(2): 199– 207, 214. doi: 10.3969/j.issn.1672-2337.2023.02.011
    [33] HENTHORN S, O’FARRELL T, ANBIYAEI M R, et al. Concurrent multiband direct rf sampling receivers[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 550–562. doi: 10.1109/TWC.2022.3196279
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  167
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 修回日期:  2023-09-22
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回