高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多路去耦网络的对跖Vivaldi天线阵解耦

邹晓鋆 许旭光 康国钦 朱航 谭铭 宋伟

邹晓鋆, 许旭光, 康国钦, 朱航, 谭铭, 宋伟. 基于多路去耦网络的对跖Vivaldi天线阵解耦[J]. 电子与信息学报, 2023, 45(11): 3973-3983. doi: 10.11999/JEIT230562
引用本文: 邹晓鋆, 许旭光, 康国钦, 朱航, 谭铭, 宋伟. 基于多路去耦网络的对跖Vivaldi天线阵解耦[J]. 电子与信息学报, 2023, 45(11): 3973-3983. doi: 10.11999/JEIT230562
ZOU Xiaojun, XU Xuguang, KANG Guoqin, ZHU Hang, TAN Ming, SONG Wei. Decoupling of Antipodal Vivaldi Antenna Array Based on Multi-route Decoupling Network[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3973-3983. doi: 10.11999/JEIT230562
Citation: ZOU Xiaojun, XU Xuguang, KANG Guoqin, ZHU Hang, TAN Ming, SONG Wei. Decoupling of Antipodal Vivaldi Antenna Array Based on Multi-route Decoupling Network[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3973-3983. doi: 10.11999/JEIT230562

基于多路去耦网络的对跖Vivaldi天线阵解耦

doi: 10.11999/JEIT230562
基金项目: 国家自然科学基金(62201579, 62201580)
详细信息
    作者简介:

    邹晓鋆:男,博士,讲师,研究方向为阵列天线、耦合调控技术、超材料等

    许旭光:男,博士,讲师,研究方向为雷达信号处理

    康国钦:男,博士,副教授,研究方向为电子对抗理论与方法

    朱航:男,博士,讲师,研究方向为非平稳信号处理、电子对抗理论与方法

    谭铭:男,博士,讲师,研究方向为阵列信号处理

    宋伟:男,博士,讲师,研究方向为电子对抗理论与方法

    通讯作者:

    宋伟  songwei81@126.com

  • 中图分类号: TN823

Decoupling of Antipodal Vivaldi Antenna Array Based on Multi-route Decoupling Network

Funds: The National Natural Science Foundation of China (62201579, 62201580)
  • 摘要: 该文提出一种基于多路去耦网络解耦宽带天线阵的设计方法。首先,通过节点分析法推导通用多路去耦网络模型的解耦条件和阻抗匹配条件,形成一般设计方法。其次,将多路去耦网络应用至2元对跖Vivaldi天线阵,以低频段为设计基点,依据设计原理得到多路去耦网络的结构参数,增加渐变传输线拓展去耦带宽。实测结果表明,阵列在3.34~13 GHz(3.89:1)的工作频段内隔离度均高于20 dB,与耦合阵相比隔离带宽增加58.8%,且辐射性能得到改善。最后,在1维8元阵列中验证多路去耦网络的有效性,阵列在带内隔离度均高于20 dB,且在±60°的扫描范围内具有良好的辐射性能。所设计的多路去耦网络具有通用性、结构简单和宽带解耦能力,在相控阵天线和大规模通信系统中具有极大的应用前景。
  • 图  1  多路去耦网络模型

    图  2  加载多路去耦网络的H面对跖Vivaldi天线解耦阵

    图  3  耦合阵和解耦阵的耦合系数随阵元间距d的变化情况

    图  4  结构变量在Z1θ5下的计算值

    图  5  2元对跖Vivaldi天线耦合阵、解耦阵的仿真和实测S参数以及解耦阵的加工实物图

    图  6  2元对跖Vivaldi天线耦合阵、解耦阵仿真和实测法向增益

    图  7  2元对跖Vivaldi天线耦合阵、解耦阵中阵元1仿真和实测的归一化辐射方向图

    图  8  2元对跖Vivaldi天线耦合阵、解耦阵中阵元2仿真和实测的归一化辐射方向图

    图  9  2元对跖Vivaldi天线耦合阵、解耦阵的电流分布图

    图  10  1维8元对跖Vivaldi天线耦合阵、解耦阵仿真和实测的S参数以及解耦阵的加工实物图

    图  11  1维8元对跖Vivaldi天线耦合阵、解耦阵的法向增益

    图  12  1维8元对跖Vivaldi天线耦合阵、解耦阵中阵元4仿真和实测的归一化辐射方向图

    图  13  1维8元对跖Vivaldi天线解耦阵的仿真和实测归一化辐射方向图

    表  1  多路去耦网络的尺寸(mm)

    参数 h0 h w1 w2 w3 w4
    5 1 1 1 1.9 30
    参数 l1 l2 l3 l4 l5 l6
    0 8.9 6 8 6 16
    下载: 导出CSV
  • [1] CHEN S C, WANG Y S, and CHUNG S J. A decoupling technique for increasing the port isolation between two strongly coupled antennas[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(12): 3650–3658. doi: 10.1109/tap.2008.2005469
    [2] SUI Jiangwei and WU Keli. A general T-stub circuit for decoupling of two dual-band antennas[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6): 2111–2121. doi: 10.1109/tmtt.2017.2647951
    [3] ZHANG Yiming, YE Qicheng, PEDERSEN G F, et al. A simple decoupling network with filtering response for patch antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7427–7439. doi: 10.1109/tap.2021.3070632
    [4] ZHAO Luyu, YEUNG L K, and WU Keli. A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(5): 2767–2776. doi: 10.1109/tap.2014.2308547
    [5] ZHAO Luyu and WU Keli. A dual-band coupled resonator decoupling network for two coupled antennas[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 2843–2850. doi: 10.1109/tap.2015.2421973
    [6] LI Min, YEUNG K L, JIANG Lijun, et al. Design of wideband decoupling networks for MIMO antennas based on an N-ary optimization algorithm[J]. IEEE Transactions on Vehicular Technology, 2022, 71(5): 5246–5258. doi: 10.1109/tvt.2022.3156397
    [7] LI Min, ZHANG Yujie, WU Di, et al. Decoupling and matching network for dual-band MIMO antennas[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 1764–1775. doi: 10.1109/tap.2021.3118791
    [8] VOLMER C, WEBER J, STEPHAN R, et al. An Eigen-analysis of compact antenna arrays and its application to port decoupling[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2): 360–370. doi: 10.1109/tap.2007.915450
    [9] XIA Runliang, QU Shiwei, LI Pengfa, et al. Wide-angle scanning phased array using an efficient decoupling network[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 5161–5165. doi: 10.1109/tap.2015.2476342
    [10] WANG Zitong and WU Qi. A novel decoupling feeding network for circularly polarized patch arrays using orthogonal mode decomposition[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1448–1457. doi: 10.1109/tap.2022.3228693
    [11] LI Min, JIANG Lijun, and YEUNG K L. A novel wideband decoupling network for two antennas based on the Wilkinson power divider[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5082–5094. doi: 10.1109/tap.2020.2981679
    [12] LI Min, YASIR J M, YEUNG K L, et al. A novel dual-band decoupling technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(10): 6923–6934. doi: 10.1109/tap.2020.2995314
    [13] ZOU Xiaojun, WANG Guangming, WANG Yawei, et al. An efficient decoupling network between feeding points for multielement linear arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3101–3108. doi: 10.1109/tap.2019.2899039
    [14] WOJCIK D, SURMA M, NOGA A, et al. High port-to-port isolation dual-polarized antenna array dedicated for full-duplex base stations[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1098–1102. doi: 10.1109/lawp.2020.2989698
    [15] YANG Mengting, LIU Changrong, and LIU Xueguan. Design of π-shaped decoupling network for dual-polarized Y-probe antenna arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(6): 1129–1133. doi: 10.1109/lawp.2022.3158991
    [16] ZOU Xiaojun, WANG Guangming, KANG Guoqin, et al. Wideband coupling suppression with neutralization-line-incorporated decoupling network in MIMO arrays[J]. AEU-International Journal of Electronics and Communications, 2023, 167: 154688. doi: 10.1016/j.aeue.2023.154688
    [17] 童三强. 二维宽带宽角扫描紧耦合相控阵天线关键问题研究[D]. [博士论文], 电子科技大学, 2022.

    TONG Sanqiang. Studies on the key problems of two-dimensional wideband wide-angle scanning tightly coupled phased arrays[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2022.
    [18] ZHANG Tingting, CHEN Yikai, LIU Zhiyuan, et al. A low-scattering Vivaldi antenna array with slits on nonradiating edges[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1999–2004. doi: 10.1109/tap.2022.3232690
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  544
  • HTML全文浏览量:  233
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 修回日期:  2023-09-11
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回