高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空自适应图卷积与Transformer结合的动作识别网络

韩宗旺 杨涵 吴世青 陈龙

韩宗旺, 杨涵, 吴世青, 陈龙. 时空自适应图卷积与Transformer结合的动作识别网络[J]. 电子与信息学报, 2024, 46(6): 2587-2595. doi: 10.11999/JEIT230551
引用本文: 韩宗旺, 杨涵, 吴世青, 陈龙. 时空自适应图卷积与Transformer结合的动作识别网络[J]. 电子与信息学报, 2024, 46(6): 2587-2595. doi: 10.11999/JEIT230551
HAN Zongwang, YANG Han, WU Shiqing, CHEN Long. Action Recognition Network Combining Spatio-Temporal Adaptive Graph Convolution and Transformer[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2587-2595. doi: 10.11999/JEIT230551
Citation: HAN Zongwang, YANG Han, WU Shiqing, CHEN Long. Action Recognition Network Combining Spatio-Temporal Adaptive Graph Convolution and Transformer[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2587-2595. doi: 10.11999/JEIT230551

时空自适应图卷积与Transformer结合的动作识别网络

doi: 10.11999/JEIT230551
基金项目: 国家自然科学基金(52005338)
详细信息
    作者简介:

    韩宗旺:男,博士,研究方向为机器视觉和人机协作

    杨涵:男,硕士,研究方向为机器视觉和动作识别

    吴世青:男,副教授,硕士生导师,研究方向为机器人与数字孪生

    陈龙:男,教授,博士生导师,研究方向为机器人与机器视觉

    通讯作者:

    吴世青 wsq07599@usst.edu.cn

  • 中图分类号: TN911.73; TP391.41; TP18

Action Recognition Network Combining Spatio-Temporal Adaptive Graph Convolution and Transformer

Funds: The National Natural Science Foundation of China (52005338)
  • 摘要: 在一个以人为中心的智能工厂中,感知和理解工人的行为是至关重要的,不同工种类别往往与工作时间和工作内容相关。该文通过结合自适应图和Transformer两种方式使模型更关注骨架的时空信息来提高模型识别的准确率。首先,采用一个自适应的图方法去关注除人体骨架之外的连接关系。进一步,采用Transformer框架去捕捉工人骨架在时间维度上的动态变化信息。为了评估模型性能,制作了智能生产线装配任务中6种典型的工人动作数据集,并进行验证,结果表明所提模型在Top-1精度上与主流动作识别模型相当。最后,在公开的NTU-RGBD和Skeleton-Kinetics数据集上,将该文模型与一些主流方法进行对比,实验结果表明,所提模型具有良好鲁棒性。
  • 图  1  数据收集场景布置与6种工人活动示例图

    图  2  OpenPose提取的人体骨架示例

    图  3  模型的整体流程

    图  4  STA-GCN-Transformer动作识别网络的详细架构

    图  5  建模工人骨架作为图结构

    图  6  自适应图卷积的邻接矩阵示例图

    图  7  本文模型与原始模型方法在工人行为数据集上的测试精度

    图  8  将Feature embedding最后提取到的特征加入位置编码以获取帧序列信息

    表  1  工人活动任务

    编号任务活动
    1从工具箱中拿出工具GT
    2在板上钉4颗钉子HN
    3使用电钻拧紧10颗螺丝UP
    4喝水15 sDW
    5使用螺丝刀拧紧10颗螺丝TS
    6使用卷尺UT
    下载: 导出CSV

    表  2  工人的行为数据集样本分布

    自愿者编号GTHNUPDWTSUT
    1392725182841
    2213515241732
    3252037313335
    4313018294629
    合计11611295102124137
    下载: 导出CSV

    表  3  在工人数据集和其他有竞争力的方法进行比较(%)

    方法Top-1
    Deep LSTM [23]79.89
    TCN [13]80.94
    ST-GCN [18]82.22
    DSTANet [7]87.73
    PoseConv3D[17]91.30
    本文模型90.91
    下载: 导出CSV

    表  4  在NTU-RGBD数据集上和其他有竞争力的方法进行比较(%)

    方法 X-Sub X-View
    Lie Group [4] 50.10 82.80
    Deep LSTM [23] 60.70 67.30
    ARRN-LSTM [10] 80.70 88.80
    nd-RNN [11] 81.80 88.00
    TCN [13] 74.30 83.10
    Clips+CNN+MTLN [14] 79.60 84.80
    Synthesized CNN [15] 80.00 87.20
    CNN+Motion+Trans [16] 83.20 89.30
    ST-GCN [18] 81.50 88.30
    Shift-GCN [12] 90.70 96.50
    MSST-Net [9] 86.60 92.80
    DPRL+GCNN [19] 83.50 89.80
    本文模型 85.95 91.85
    下载: 导出CSV

    表  5  在Skeleton-Kinetics数据上和其他有竞争力的方法进行比较(%)

    方法Top-1Top-5
    Deep LSTM [23]16.4035.30
    TCN [13]20.3040.00
    ST-GCN [18]30.7052.80
    DSTANet [7]31.1053.20
    CoAGCN [5]35.0057.30
    本文模型32.1554.55
    下载: 导出CSV

    表  6  比较Transformer的各个组件对工人动作识别精度(%)的影响

    方法 Top-1 Top-5
    MHA 38.28 40.95
    MHA+FFN 54.67 62.61
    MHA+FFN+PE 76.68 87.88
    GCN+FFN+PE 70..53 81.37
    AGCN+FFN+PE 75.42 86.68
    ST-GCN+Transformer 87.61 92.91
    STA-GCN+Transformer 90.91 97.21
    下载: 导出CSV
  • [1] 石跃祥, 朱茂清. 基于骨架动作识别的协作卷积Transformer网络[J]. 电子与信息学报, 2023, 45(4): 1485–1493. doi: 10.11999/JEIT220270.

    SHI Yuexiang and ZHU Maoqing. Collaborative convolutional transformer network based on skeleton action recognition[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1485–1493. doi: 10.11999/JEIT220270.
    [2] GEDAMU K, JI Yanli, GAO Lingling, et al. Relation-mining self-attention network for skeleton-based human action recognition[J]. Pattern Recognition, 2023, 139: 109455. doi: 10.1016/j.patcog.2023.109455.
    [3] GUO Hongling, ZHANG Zhitian, YU Run, et al. Action recognition based on 3D skeleton and LSTM for the monitoring of construction workers’ safety harness usage[J]. Journal of Construction Engineering and Management, 2023, 149(4): 04023015. doi: 10.1061/JCEMD4.COENG-12542.
    [4] VEMULAPALLI R, ARRATE F, and CHELLAPPA R. Human action recognition by representing 3D skeletons as points in a lie group[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 588–595. doi: 10.1109/CVPR.2014.82.
    [5] HEDEGAARD L, HEIDARI N, and IOSIFIDIS A. Continual spatio-temporal graph convolutional networks[J]. Pattern Recognition, 2023, 140: 109528. doi: 10.1016/j.patcog.2023.109528.
    [6] YU B X B, LIU Yan, ZHANG Xiang, et al. Mmnet: A model-based multimodal network for human action recognition in RGB-D videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3522–3538. doi: 10.1109/TPAMI.2022.3177813.
    [7] SHI Lei, ZHANG Yifan, CHENG Jian, et al. Decoupled spatial-temporal attention network for skeleton-based action-gesture recognition[C]. The 15th Asian Conference on Computer Vision, Kyoto, Japan, 2021. doi: 10.1007/978-3-030-69541-5_3.
    [8] 陈莹, 龚苏明. 改进通道注意力机制下的人体行为识别网络[J]. 电子与信息学报, 2021, 43(12): 3538–3545. doi: 10.11999/JEIT200431.

    CHEN Ying and GONG Suming. Human action recognition network based on improved channel attention mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3538–3545. doi: 10.11999/JEIT200431.
    [9] CHENG Qin, REN Ziliang, CHENG Jun, et al. Skeleton-based action recognition with multi-scale spatial-temporal convolutional neural network[C]. 2021 IEEE International Conference on Real-time Computing and Robotics, Xining, China, 2021: 957–962. doi: 10.1109/RCAR52367.2021.9517665.
    [10] LI Lin, ZHANG Wu, ZHANG Zhaoxiang, et al. Skeleton-based relational modeling for action recognition[J]. arXiv preprint arXiv: 1805.02556, 2018.
    [11] LI Shuai, LI Wangqiang, COOK C, et al. Independently recurrent neural network (IndRNN): Building a longer and deeper RNN[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5457–5466. doi: 10.1109/CVPR.2018.00572.
    [12] CHENG Ke, ZHANG Yifan, HE Xiangyu, et al. Skeleton-based action recognition with shift graph convolutional network[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 183–192. doi: 10.1109/CVPR42600.2020.00026.
    [13] KIM T S and REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1623–1631. doi: 10.1109/CVPRW.2017.207.
    [14] KE Q H, BENNAMOUN M, AN S J, et al. A new representation of skeleton sequences for 3D action recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3288–3297. doi: 10.1109/CVPR.2017.486.
    [15] LIU Mengyuan, LIU Hong, and CHEN Chen. Enhanced skeleton visualization for view invariant human action recognition[J]. Pattern Recognition, 2017, 68: 346–362. doi: 10.1016/j.patcog.2017.02.030.
    [16] DU Yong, FU Yun, and WANG Liang. Skeleton based action recognition with convolutional neural network[C]. 2015 3rd IAPR Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, 2015: 579–583. doi: 10.1109/ACPR.2015.7486569.
    [17] DUAN Haodong, ZHAO Yue, CHEN Kai, et al. Revisiting skeleton-based action recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2969–2978. doi: 10.1109/CVPR52688.2022.00298.
    [18] YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. The Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, USA, 2018: 912.
    [19] TANG Yansong, TIAN Yi, LU Jiwen, et al. Deep progressive reinforcement learning for skeleton-based action recognition[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5323–5332. doi: 10.1109/CVPR.2018.00558.
    [20] BASAK H, KUNDU R, SINGH P K, et al. A union of deep learning and swarm-based optimization for 3D human action recognition[J]. Scientific Reports, 2022, 12(1): 5494. doi: 10.1038/s41598-022-09293-8.
    [21] CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7291–7299. doi: 10.1109/CVPR.2017.143.
    [22] CHEN Yuxin, ZHANG Ziqi, YUAN Chunfeng, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13359–13368. doi: 10.1109/ICCV48922.2021.01311.
    [23] SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB+d: A large scale dataset for 3D human activity analysis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1010–1019. doi: 10.1109/CVPR.2016.115.
    [24] SEIDENARI L, VARANO V, BERRETTI S, et al. Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, USA, 2013: 479–485. doi: 10.1109/CVPRW.2013.77.
    [25] SLAMA R, WANNOUS H, DAOUDI M, et al. Accurate 3D action recognition using learning on the Grassmann manifold[J]. Pattern Recognition, 2015, 48(2): 556–567. doi: 10.1016/j.patcog.2014.08.011.
    [26] SHI Lei, ZHANG Yifan, CHENG Jian, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on Image Processing, 2020, 29: 9532–9545. doi: 10.1109/TIP.2020.3028207.
    [27] STIEFMEIER T, ROGGEN D, OGRIS G, et al. Wearable activity tracking in car manufacturing[J]. IEEE Pervasive Computing, 2008, 7(2): 42–50. doi: 10.1109/MPRV.2008.40.
    [28] WANG Limin, XIONG Yuanjun, WANG Zhe, et al. Temporal segment networks: Towards good practices for deep action recognition[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 20–36. doi: 10.1007/978-3-319-46484-8_2.
    [29] JIANG Wenchao and YIN Zhaozheng. Human activity recognition using wearable sensors by deep convolutional neural networks[C]. The 23rd ACM international conference on Multimedia, Brisbane, Australia, 2015: 1307–1310. doi: 10.1145/2733373.2806333.
    [30] TAO Wenjin, LEU M C, and YIN Zhaozheng. Multi-modal recognition of worker activity for human-centered intelligent manufacturing[J]. Engineering Applications of Artificial Intelligence, 2020, 95: 103868. doi: 10.1016/j.engappai.2020.103868.
    [31] SONG Yifan, ZHANG Zhang, SHAN Caifeng, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1474–1488. doi: 10.1109/TPAMI.2022.3157033.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  147
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2024-03-11
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回