高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于通感融合的无人机预编码及飞行轨迹设计

柴蓉 崔相霖 孙瑞锦 陈前斌

柴蓉, 崔相霖, 孙瑞锦, 陈前斌. 基于通感融合的无人机预编码及飞行轨迹设计[J]. 电子与信息学报, 2024, 46(4): 1266-1275. doi: 10.11999/JEIT230515
引用本文: 柴蓉, 崔相霖, 孙瑞锦, 陈前斌. 基于通感融合的无人机预编码及飞行轨迹设计[J]. 电子与信息学报, 2024, 46(4): 1266-1275. doi: 10.11999/JEIT230515
CHAI Rong, CUI Xianglin, SUN Ruijin, CHEN Qianbin. Precoding and Trajectory Design of Unmanned Aerial Vehicle Based on Joint Communication and Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1266-1275. doi: 10.11999/JEIT230515
Citation: CHAI Rong, CUI Xianglin, SUN Ruijin, CHEN Qianbin. Precoding and Trajectory Design of Unmanned Aerial Vehicle Based on Joint Communication and Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1266-1275. doi: 10.11999/JEIT230515

基于通感融合的无人机预编码及飞行轨迹设计

doi: 10.11999/JEIT230515
基金项目: 国家自然科学基金(62271097)
详细信息
    作者简介:

    柴蓉:女,教授,研究方向为通信网络架构及关键技术、无线资源管理及移动性管理技术等

    崔相霖:男,硕士生,研究方向为无线通信、无线资源管理等

    孙瑞锦:女,菁英副教授,研究方向为知识驱动的资源调度

    陈前斌:男,教授,研究方向为无线通信、通信网络理论、软件定义网络、多媒体技术等

    通讯作者:

    柴蓉 chairong@cqupt.edu.cn

  • 中图分类号: TN915

Precoding and Trajectory Design of Unmanned Aerial Vehicle Based on Joint Communication and Sensing

Funds: The National Natural Science Foundation of China (62271097)
  • 摘要: 无人机(UAVs)具有机动性强,低成本及易部署等特性,通过搭载通信及感知设备,支持通信与感知技术的高效资源共享,无人机可作为融合通信与传感技术的高性能空中平台。该文针对多输入多输出(MIMO)无人机使能的联合通信、感知场景,综合考虑无人机飞行能量、多天线传输及用户业务需求等限制条件,建模无人机通信、感知预编码及飞行轨迹联合优化问题为多目标优化问题,以实现通信用户最低速率最大化及目标最小发现概率最大化。由于通信用户最低速率最大化问题为非凸优化问题,难以直接求解,将原优化问题分解为通信预编码设计子问题及无人机轨迹设计子问题,并采用交替迭代法依次求解两个子问题直至算法收敛,其中,对于通信预编码设计子问题,提出一种基于迫零(ZF)算法的求解策略;对于无人机轨迹设计子问题,提出一种基于连续凸逼近(SCA)算法的求解策略。基于所得到的无人机最优轨迹,将无人机感知位置选择问题建模为加权距离和最小化问题,进而应用泛搜索算法优化确定目标感知位置,并设计基于ZF算法的通信感知预编码联合优化策略,以实现通信感知性能的联合优化。最后通过仿真验证了该文所提算法的有效性。
  • 图  1  系统模型图

    图  2  无人机飞行轨迹

    图  3  无人机飞行轨迹及目标感知位置图

    图  4  用户最低通信速率对比

    图  5  算法对比

    图  6  感知性能对比

    表  1  仿真参数设置

    仿真参数 数值
    LOS特性系数(ρ0) 10–2
    飞行高度(L) 50 m
    噪声标准差(σ2) 10–10 W
    无人机速度上限(Vmax) 30 m/s
    无人机飞行能量系数(k1,k2) 0.066 1, 15.97
    飞行通信能量上限(Ec) 100 J
    无人机飞行能量上限 4×104 J, 8×104 J
    无人机通感联合能量上限(Es) 100 J
    每时隙通信发射功率上限($ p_{\max }^{\text{c}} $) 1.5 W
    每时隙感知发射功率上限($ p_{\max }^{\text{s}} $) 30 W
    雷达最小接收灵敏度(Si min) –90 dBm
    下载: 导出CSV
  • [1] ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329.
    [2] ZHANG J A, HUANG Xiaojing, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 671–685. doi: 10.1109/TVT.2018.2883796.
    [3] YUAN Xin, FENG Zhiyong, ZHANG J A, et al. Spatio-temporal power optimization for MIMO joint communication and radio sensing systems with training overhead[J]. IEEE Transactions on Vehicular Technology, 2021, 70(1): 514–528. doi: 10.1109/TVT.2020.3046438.
    [4] 江源. 面向MU-MIMO的符号级预编码和接收波束赋形[D]. [硕士论文], 南京邮电大学, 2022. doi: 10.27251/d.cnki.gnjdc.2022.001094.

    JIANG Yuan. Symbol level precoding and receive beamforming for MU-MIMIO[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2022. doi: 10.27251/d.cnki.gnjdc.2022.001094.
    [5] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [6] ZHOU Yifan, ZHOU Huilin, ZHOU Fuhui, et al. Resource allocation for a wireless powered integrated radar and communication system[J]. IEEE Wireless Communications Letters, 2019, 8(1): 253–256. doi: 10.1109/LWC.2018.2868819.
    [7] SAVKIN A V and HUANG Hailong. Deployment of unmanned aerial vehicle base stations for optimal quality of coverage[J]. IEEE Wireless Communications Letters, 2019, 8(1): 321–324. doi: 10.1109/LWC.2018.2872547.
    [8] SUN Jingcong and MASOUROS C. Deployment strategies of multiple aerial BSs for user coverage and power efficiency maximization[J]. IEEE Transactions on Communications, 2019, 67(4): 2981–2994. doi: 10.1109/TCOMM.2018.2889460.
    [9] SHABANIGHAZIKELAYEH M and KOYUNCU E. Outage-optimized deployment of UAVs[C]. The 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Istanbul, Turkey, 2019: 1–6. doi: 10.1109/PIMRC.2019.8904305.
    [10] WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293.
    [11] WU Jun, LI Pei, BAO Jianrong, et al. Quick multiband spectrum sensing for delay-constraint cognitive UAV networks[J]. IEEE Sensors Journal, 2022, 22(19): 19088–19100. doi: 10.1109/JSEN.2022.3201006.
    [12] MENG Kaitao, LI Deshi, HE Xiaofan, et al. Space pruning based time minimization in delay constrained multi-task UAV-based sensing[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2836–2849. doi: 10.1109/TVT.2021.3061243.
    [13] MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [14] MENG Kaitao, WU Qingqing, MA Shaodan, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1211–1215. doi: 10.1109/LWC.2022.3161338.
    [15] 丁鹭飞, 耿富录. 雷达原理[M]. 3版. 西安: 西安电子科技大学出版社, 2002: 130–138.

    DING Lufei and GENG Fulu. Principle of Radar[M]. 3rd ed. Xi'an: Xidian University Press, 2002: 130–138.
    [16] JI Jiequ, ZHU Kun, YI Changyan, et al. Energy consumption minimization in UAV-assisted mobile-edge computing systems: Joint resource allocation and trajectory design[J]. IEEE Internet of Things Journal, 2021, 8(10): 8570–8584. doi: 10.1109/JIOT.2020.3046788.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  230
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-12-01
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回