高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面室内部署的位置规划方法

王文鼐 耿心怡 余锦涵 吴炜 王斌

王文鼐, 耿心怡, 余锦涵, 吴炜, 王斌. 智能反射面室内部署的位置规划方法[J]. 电子与信息学报, 2024, 46(4): 1314-1320. doi: 10.11999/JEIT230414
引用本文: 王文鼐, 耿心怡, 余锦涵, 吴炜, 王斌. 智能反射面室内部署的位置规划方法[J]. 电子与信息学报, 2024, 46(4): 1314-1320. doi: 10.11999/JEIT230414
WANG Wennai, GENG Xinyi, YU Jinhan, WU Wei, WANG Bin. A Placement Planning Scheme of Intelligent-Reflecting-Surface for In-door Deployment[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1314-1320. doi: 10.11999/JEIT230414
Citation: WANG Wennai, GENG Xinyi, YU Jinhan, WU Wei, WANG Bin. A Placement Planning Scheme of Intelligent-Reflecting-Surface for In-door Deployment[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1314-1320. doi: 10.11999/JEIT230414

智能反射面室内部署的位置规划方法

doi: 10.11999/JEIT230414
详细信息
    作者简介:

    王文鼐:男,教授,研究方向为无线宽带通信网络、网络仿真与性能评估

    耿心怡:女,硕士生,研究方向为无线宽带通信网络

    余锦涵:男,硕士生,研究方向为无线宽带通信网络

    吴炜:女,博士,助教,研究方向为无线宽带通信网络

    王斌:男,副教授,研究方向为无线宽带通信网络

    通讯作者:

    王文鼐 wangwn@njupt.edu.cn

  • 中图分类号: TN915

A Placement Planning Scheme of Intelligent-Reflecting-Surface for In-door Deployment

  • 摘要: 智能反射面(IRS/RIS)应用于实际无线通信系统时,如何优选布放位置及面板取向,是提升技术实效所面临的主要问题之一。RIS布放的数学规划问题,不仅有优化目标的设计,还要考虑通信环境的建筑物分布和可选部署面的有效散射截面。相比于室外较为开放的空间,RIS的室内部署存在更多限制性条件。针对室内既有墙面的RIS布放,该文设计了多终端接入选址规划模型和等价问题。为约化其非线性计算,通过单终端退化分析,给出目标函数的卡西尼卵形线分布特征,证明RIS布放范围限于各终端及基站在部署面投影的重叠区,提出基于对半搜索法的高效启发式算法。数值仿真了2种复杂室内结构的多终端接入场景,结果表明所提算法不仅有显著加速效益,还可扩展用于多RIS网络规划。
  • 图  1  RIS级联信道示意图(BLK为LOS遮挡物)

    图  2  RIS级联信道fQ等值线图(虚线对应b = ±0.5 m)

    图  3  BS和UE至RIS部署可行区的投影示例

    图  4  RIS 室内部署(测例A)平面图

    图  5  RIS部署效果对比(插图示意UE相对位置)

    图  6  测例A究举(BF,总计495步)和对半搜索(BS,总计8步)的计算对比

    图  7  测例A计算得到的fQ (x) 随权重w的变化关系

    图  8  两个RIS联级的计算示例(小球表示BS,上方3个、中间2个小立方表示UE、天花板和墙面上小立方表示RIS)

    1  RPP启发式搜索算法(RPP-HS)伪代码

    - 输入:R[j], j∈[1,N] //UE位置坐标
    F //RIS部署可行区
    N //UE总数
    EPS //计算精度
    输出:R[0] //RIS最优位置
    0 RPP-HS (R,F,N,EPS) {
    1  dm = 0; S = F; R[0] = vec3d(0); //初始化
    2  p[0],c[0],d[0] = proj(R[0]); //BS投影计算
    3  for (j = 1 to N) {
    4   p[j],c[j],d[j] = proj(R[j]); //UE投影计算
    5   if (d[0] < d[j]) { //如果远离RIS
    6    p[j] = p[0]; //选BS投影点
    7   }
    8   S = S ∩ rect(c[j], p[j]); //UE附近可行区
    9   if (dm < dist(c[j], p[0])) { //中心投影点计算
    10    dm = dist(c[j], p[0]);
    11    c[0] = c[j]; //最远中心
    12   }
    13  }//end-of-for
    14 S = S ∪ rect(c[0], p[0]); //BS附近可行区
    15 R[0] = p[0]; //初始搜索点
    16 MAX = argmax{|p-p[0]|,p∈S}; //最远搜索点
    17 while (dist(R[0], MAX) > EPS) { //收敛判定
    18  MID = mid(R[0], MAX); //对半
    19   if (slopeFQ(MID)>0) { //式(12)
    20    R[0]= MID; //前推
    21   } else {
    22    MAX = MID; //后退
    23   }
    24  }//end-of-while
    25  return R[0];
    26 }
    下载: 导出CSV

    表  1  测例A的主要计算参数

    类别参数名
    空间结
    构参数
    a10.0 m
    b5.0 m
    c2.0 m
    N4
    h1–2.0 m
    h20.0 m
    h31.0 m
    h4–1.0 m
    计算精度EPS0.1 m
    下载: 导出CSV
  • [1] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [2] PAN Cunhua, ZHOU Gui, ZHI Kangda, et al. An overview of signal processing techniques for RIS/IRS-aided wireless systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 883–917. doi: 10.1109/JSTSP.2022.3195671.
    [3] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [4] CHEN Zhen, CHEN Gaojie, TANG Jie, et al. Reconfigurable-intelligent-surface-assisted B5G/6G wireless communications: Challenges, solution, and future opportunities[J]. IEEE Communications Magazine, 2023, 61(1): 16–22. doi: 10.1109/MCOM.002.2200047.
    [5] BOYER C. ETSI launches a new group on reconfigurable intelligent surfaces[EB/OL]. https://www.etsi.org/technologies/reconfigurable-intelligent-surfaces, 2021.
    [6] 马红兵, 张平, 杨帆, 等. 智能超表面技术展望与思考[J]. 中兴通讯技术, 2022, 28(3): 70–77. doi: 10.12142/ZTETJ.202203012.

    MA Hongbing, ZHANG Ping, YANG Fan, et al. Reflections on reconfigurable intelligent surface technology[J]. ZTE Technology Journal, 2022, 28(3): 70–77. doi: 10.12142/ZTETJ.202203012.
    [7] NEMATI M, PARK J, and CHOI J. RIS-assisted coverage enhancement in millimeter-wave cellular networks[J]. IEEE Access, 2020, 8: 188171–188185. doi: 10.1109/ACCESS.2020.3031392.
    [8] TISHCHENKO A, ALI A, BOTHAM P, et al. Reflective metasurface for 5G mmWave coverage enhancement[C]. 2022 International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 2022: 507–508. doi: 10.1109/ISAP53582.2022.9998700.
    [9] NTONTIN K, BOULOGEORGOS A A A, SELIMIS D G, et al. Reconfigurable intelligent surface optimal placement in millimeter-wave networks[J]. IEEE Open Journal of the Communications Society, 2021, 2: 704–718. doi: 10.1109/OJCOMS.2021.3068790.
    [10] AMALDI E, CAPONE A, CESANA M, et al. WLAN coverage planning: Optimization models and algorithms[C]. IEEE 59th Vehicular Technology Conference. VTC 2004-Spring, Milan, Italy, 2004: 2219–2223. doi: 10.1109/VETECS.2004.1390668.
    [11] FORTUNE S J, GAY D M, KERNIGHAN B W, et al. WISE design of indoor wireless systems: Practical computation and optimization[J]. IEEE Computational Science and Engineering, 1995, 2(1): 58–68. doi: 10.1109/99.372944.
    [12] LING Bifeng, LÜ Jiangbin, and FU Liqun. Placement optimization and power control in intelligent reflecting surface aided multiuser system[C]. 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9686030.
    [13] YOU Changsheng, ZHENG Beixiong, MEI Weidong, et al. How to deploy intelligent reflecting surfaces in Wireless Network: BS-Side, user-side, or both sides?[J]. Journal of Communications and Information Networks, 2022, 7(1): 1–10. doi: 10.23919/JCIN.2022.9745477.
    [14] KAYRAKLIK S, YILDIRIM I, GEVEZ Y, et al. Indoor coverage enhancement for RIS-assisted communication systems: Practical measurements and efficient grouping[C]. 2023 IEEE International Conference on Communications, Rome, Italy, 2023: 485–490. doi: 10.1109/ICC45041.2023.10278759.
    [15] TOHIDI E, HAESLOOP S, THIELE L, et al. Near-optimal LOS and orientation aware intelligent reflecting surface placement[C]. 2023 IEEE International Conference on Communications, Rome, Italy, 2023: 498–504. doi: 10.1109/ICC45041.2023.10279027.
    [16] KHEYFITS A. The theorem of cosines for pyramids[J]. The College Mathematics Journal, 2004, 35(5): 385–388. doi: 10.2307/4146849.
    [17] KARATAŞ M. A multi foci closed curve: Cassini Oval, its properties and applications[J]. Doğuş Üniversitesi Dergisi, 2013, 2(14): 231–248. doi: 10.31671/dogus.2018.108.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  158
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2024-01-31
  • 网络出版日期:  2024-03-09
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回