高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不确定区域的水下纯方位目标跟踪方案

李海鹏 聂朝阳

李海鹏, 聂朝阳. 基于不确定区域的水下纯方位目标跟踪方案[J]. 电子与信息学报, 2024, 46(1): 109-117. doi: 10.11999/JEIT230375
引用本文: 李海鹏, 聂朝阳. 基于不确定区域的水下纯方位目标跟踪方案[J]. 电子与信息学报, 2024, 46(1): 109-117. doi: 10.11999/JEIT230375
LI Haipeng, NIE Zhaoyang. Underwater Bearing-only Passive Target Tracking Method Based on Area of Uncertainty[J]. Journal of Electronics & Information Technology, 2024, 46(1): 109-117. doi: 10.11999/JEIT230375
Citation: LI Haipeng, NIE Zhaoyang. Underwater Bearing-only Passive Target Tracking Method Based on Area of Uncertainty[J]. Journal of Electronics & Information Technology, 2024, 46(1): 109-117. doi: 10.11999/JEIT230375

基于不确定区域的水下纯方位目标跟踪方案

doi: 10.11999/JEIT230375
基金项目: 国家自然科学基金(62201167),黑龙江省自然科学基金(YQ2019D003),崂山实验室科技创新项目(LSKJ202205103)
详细信息
    作者简介:

    李海鹏:男,讲师,研究方向为水声定位与导航

    聂朝阳:男,硕士生,研究方向为目标定位跟踪

    通讯作者:

    聂朝阳 840278449@qq.com

  • 中图分类号: TN929.3

Underwater Bearing-only Passive Target Tracking Method Based on Area of Uncertainty

Funds: The National Natural Science Foundation of China (62201167), The Natural Science Foundation of Heilongjiang Province (YQ2019D003), Science and Technology Innovation Project Funded by Laoshan Laboratory (LSKJ202205103)
  • 摘要: 围绕水下被动目标跟踪问题,目前的研究通常以最优估计点迹表征被测目标跟踪状态,而点估计无法表达示向性的位置误差信息,导致无法较好地为实际战场提供决策支持。针对上述问题,该文提出一种基于不确定区域(AOU)的水下纯方位目标跟踪方案。首先,提出一种基于变权解析的定位算法以获得精确的目标位置信息,将目标位置作为AOU构建算法的先验知识。然后,分别通过有无滤波不确定区域构造算法,输出目标位置不确定区域。通过对不同仿真态势下AOU的评估指标进行统计分析,结果表明利用该目标跟踪方案均能对目标实现可靠精确的位置估计,说明该文提出的基于不确定区域的目标跟踪方案能够有效完成目标跟踪任务。该方案优势在于,目标估计结果包含示向性位置误差和区间估计的置信度,为后续决策提供清晰的容错与判断区域,具有更好的参考价值及实用价值。
  • 图  1  基于最大后验概率的AOU构建流程图

    图  2  基于不确定区域的目标跟踪轨迹及其面积

    图  3  仿真态势1下的不确定区域置信度

    图  4  基于不确定区域的目标跟踪轨迹及其面积

    图  5  仿真态势2下的不确定区域置信度

    表  1  旋转角$\beta $的符号确定原则

    BA > CA = CA < C
    B>0$\beta + {\pi}/2$$ {\pi}/4 $$\beta $
    B=0$ {\pi}/2 $/0
    B<0$\beta - {\pi}/2$–$ {\pi}/4 $$\beta $
    下载: 导出CSV

    表  2  仿真参数

    参数名称数值
    ${{\boldsymbol{X}}_0}$目标初始状态向量$\left( { - 10,20,0.2, - 0.5} \right)$
    ${\sigma _\theta }$平台量测误差$\left( {1^\circ ,2^\circ ,2^\circ ,3^\circ } \right)$
    ${X_P}$平台位置信息(km)$( - 10,0),(0,0),(10,0),(15,0)$
    ${ { {T} }_{ {\text{p} } } }$定位采样间隔(s)1
    ${ { {T} }_{ {\text{t} } } }$滤波采样间隔(s)2
    $\Delta {\boldsymbol{v}}$变向速度状态向量${\left( {0.2, - 0.5} \right)_{ {\text{ini} } } } \to {\left( {0.5,0} \right)_{30\;{\text{s} } } } \to {\left( { - 0.1, - 0.3} \right)_{60\;{\text{s} } } }$
    下载: 导出CSV

    表  3  仿真参数

    参数名称数值
    ${{\boldsymbol{X}}_0}$目标初始状态向量$\left( { - 10,10,0.6,0.2} \right)$
    ${\sigma _\theta }$平台量测误差$\left( {3^\circ ,2^\circ ,2^\circ ,1^\circ } \right)$
    ${X_P}$平台位置信息(km)$( - 10,0),(0,0),(10,0),(15,0)$
    ${ { {T} }_{ {\text{p} } } }$定位采样间隔(s)1
    ${ { {T} }_{ {\text{t} } } }$滤波采样间隔(s)2
    $\Delta {\boldsymbol{v}}$变向速度状态向量${\left( {0.6,0.2} \right)_{ {\text{ini} } } } \to {\left( {0,0.3} \right)_{30\;{\text{s} } } } \to {\left( {0.3,0.2} \right)_{60\;{\text{s} } } }$
    下载: 导出CSV
  • [1] 杨文生, 吴旭. 非线性约束条件下的双阵纯方位目标运动分析[J]. 舰船科学技术, 2022, 44(13): 149–152. doi: 10.3404/j.issn.1672-7649.2022.13.032

    YANG Wensheng and WU Xu. Bearings-only target motion analysis with nonlinear inequality constraints using two arrays[J]. Ship Science and Technology, 2022, 44(13): 149–152. doi: 10.3404/j.issn.1672-7649.2022.13.032
    [2] 苏钰. 单基阵纯方位水下目标运动分析技术研究[D]. [硕士论文], 哈尔滨工程大学, 2021.

    SU Yu. Underwater target motion analysis technology with single base array bearing-only[D]. [Master dissertation], Harbin Engineering University, 2021.
    [3] JIANG Cuicui, FANG Yizhong, and HU Qinglei. Motion prediction for target tracking with bearing-only measurement[C]. 2022 41st Chinese Control Conference (CCC), Hefei, China, 2022: 3415–3420.
    [4] 王本才, 王国宏, 何友. 多站纯方位无源定位算法研究进展[J]. 电光与控制, 2012, 19(5): 56–62. doi: 10.3969/j.issn.1671-637X.2012.05.013

    WANG Bencai, WANG Guohong, and HE You. Progress of research on multi-sensor bearing-only passive locating algorithm[J]. Electro Optics &Control, 2012, 19(5): 56–62. doi: 10.3969/j.issn.1671-637X.2012.05.013
    [5] DOĞANÇAY K. Bearings-only target localization using total least squares[J]. Signal Process, 2005, 85(9): 1695–1710. doi: 10.1016/j.sigpro.2005.03.007
    [6] 杜金香, 许恒博, 祝鹏. 一种角度加权的最小二乘目标定位算法[J]. 水下无人系统学报, 2019, 27(5): 570–573. doi: 10.11993/j.issn.2096-3920.2019.05.013

    DU Jinxiang, XU Hengbo, and ZHU Peng. An angle weighted least squares algorithm for target localization[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 570–573. doi: 10.11993/j.issn.2096-3920.2019.05.013
    [7] 王燕, 苏钰, 齐滨, 等. 单基阵三维纯方位水下信标声学定位方法[J]. 声学学报, 2021, 46(3): 375–386. doi: 10.15949/j.cnki.0371-0025.2021.03.006

    WANG Yan, SU Yu, QI Bin, et al. 3D bearing-only acoustic positioning method for underwater beacon[J]. Acta Acustica, 2021, 46(3): 375–386. doi: 10.15949/j.cnki.0371-0025.2021.03.006
    [8] WANG Ding, ZHANG Li, and WU Ying. Constrained total least squares algorithm for passive location based on bearing-only measurements[J]. Science in China Series F:Information Sciences, 2007, 50(4): 576–586. doi: 10.1007/s11432-007-0023-8
    [9] 胡宁, 吴华, 王星, 等. 双机交叉定位误差及配置距离最优化协调分析[J]. 火力与指挥控制, 2013, 38(1): 40–44. doi: 10.3969/j.issn.1002-0640.2013.01.011

    HU Ning, WU Hua, WANG Xing, et al. Location error of bearing crossing location by two aircrafts and analysis of coordination on optimal allocation[J]. Fire Control &Command Control, 2013, 38(1): 40–44. doi: 10.3969/j.issn.1002-0640.2013.01.011
    [10] 刁联旺, 张桂林, 王惠娟. 基于广义内心的4站纯方位交叉定位算法[J]. 指挥信息系统与技术, 2014, 5(6): 56–59. doi: 10.15908/j.cnki.cist.2014.06.011

    DIAO Lianwang, ZHANG Guilin, and WANG Huijuan. 4 station based on generalized inner bearing cross localization algorithm[J]. Journal of Command Information System and Technology, 2014, 5(6): 56–59. doi: 10.15908/j.cnki.cist.2014.06.011
    [11] TERAMOTO A, TSUKAMOTO T, KIRIYAMA Y, et al. Automated classification of lung cancer types from cytological images using deep convolutional neural networks[J]. BioMed Research International, 2017, 2017 4067832.
    [12] 邱硕丰, 刘军. 无源双站交叉定位误差分析[J]. 舰船电子对抗, 2018, 41(5): 22–26. doi: 10.16426/j.cnki.jcdzdk.2018.05.005

    QIU Shuofeng and LIU Jun. Error analysis for passive double-station cross location[J]. Ship Electronic Countermeasure, 2018, 41(5): 22–26. doi: 10.16426/j.cnki.jcdzdk.2018.05.005
    [13] 王洪迅, 弥小溪, 皇甫惠栋, 等. 交叉定位模糊区的精确几何分析[J]. 电光与控制, 2012, 19(3): 17–20. doi: 10.3969/j.issn.1671-637X.2012.03.004

    WANG Hongxun, MI Xiaoxi, HAUNGFU Huidong, et al. Precise geometrical analysis of Ambiguous area in beam-crossing locating[J]. Electro Optics &Control, 2012, 19(3): 17–20. doi: 10.3969/j.issn.1671-637X.2012.03.004
    [14] PARADOWSKI L R. Uncertainty ellipses and their application to interval estimation of emitter position[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 126–133. doi: 10.1109/7.570715
    [15] 范胜召, 罗江, 张玥. 概率误差椭圆计算的推导与仿真[J]. 电子信息对抗技术, 2021, 36(6): 50–53. doi: 10.3969/j.issn.1674-2230.2021.06.010

    FAN Shengzhao, LUO Jiang, and ZHANG Yue. Derivation and simulation of elliptical error probable calculation[J]. Electronic Information Warfare Technology, 2021, 36(6): 50–53. doi: 10.3969/j.issn.1674-2230.2021.06.010
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  245
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-06-03
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回