高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铁电晶体管的存储与存算一体电路

刘勇 李泰昕 祝希 杨华中 李学清

刘勇, 李泰昕, 祝希, 杨华中, 李学清. 基于铁电晶体管的存储与存算一体电路[J]. 电子与信息学报, 2023, 45(9): 3083-3097. doi: 10.11999/JEIT230370
引用本文: 刘勇, 李泰昕, 祝希, 杨华中, 李学清. 基于铁电晶体管的存储与存算一体电路[J]. 电子与信息学报, 2023, 45(9): 3083-3097. doi: 10.11999/JEIT230370
LIU Yong, LI Taixin, ZHU Xi, YANG Huazhong, LI Xueqing. Memory and Compute-in-Memory Based on Ferroelectric Field Effect Transistors[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3083-3097. doi: 10.11999/JEIT230370
Citation: LIU Yong, LI Taixin, ZHU Xi, YANG Huazhong, LI Xueqing. Memory and Compute-in-Memory Based on Ferroelectric Field Effect Transistors[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3083-3097. doi: 10.11999/JEIT230370

基于铁电晶体管的存储与存算一体电路

doi: 10.11999/JEIT230370
基金项目: 国家自然科学基金 (U21B2030, 92264204)
详细信息
    作者简介:

    刘勇:男,通信产品线、安全产品线总经理,研究方向为物联网通信芯片产品和安全芯片产品

    李泰昕:男,研究方向为新兴器件的存储器设计、硬件安全

    祝希:男,芯片产品经理,研究方向为物联网通信芯片产品

    杨华中:男,教授,研究方向为模拟与混合信号集成电路与系统

    李学清:男,副教授,研究方向为面向智能应用的存储与计算协同设计、高性能CMOS集成电路设计

    通讯作者:

    李泰昕 ltx23@mails.tsinghua.edu.cn

  • 中图分类号: TN402

Memory and Compute-in-Memory Based on Ferroelectric Field Effect Transistors

Funds: The National Natural Science Foundation of China (U21B2030, 92264204)
  • 摘要: 近年来,物联网和人工智能等技术的发展对片上存储与智能计算的能效、密度以及性能提出了更高的要求。面对传统CMOS处理器的能效与密度瓶颈,以及传统冯·诺伊曼架构的“存储墙”瓶颈,以铁电晶体管 (FeFET)为代表的新型非易失存储器 (NVM)提供了新的机遇。FeFET具有非易失、高能效、高开关比等特点,非常适合低功耗、高密度场景下的存储与存算一体 (CiM)应用,为数据密集型应用在边缘端的部署提供支持。该文回顾了FeFET的发展历程、结构、特性以及建模相关的工作,概述了FeFET存储器在电路结构和访存机制上的探索与优化。进一步地,该文还探讨了FeFET CiM在非易失计算、存内逻辑计算、矩阵向量乘法以及内容可寻址存储器上的应用。最后,该文从不同方面分析并展望了基于FeFET的存储与CiM电路的前景与挑战。
  • 图  1  基于FeFET的存储与CiM电路的背景与挑战[12]

    图  2  FeFET器件的发展历程及最新进展[11-30]

    图  3  FeFET的结构和特性

    图  4  FeFET在3种1T/C典型存储阵列结构中的应用[39]

    图  5  不同改进的NOR型FeFET阵列的写入操作[10,39-41]

    图  6  2T/C和3T/C的FeFET存储单元[43,44]

    图  7  基于FeFET的对称存储器[46,47]

    图  8  基于FeFET的nvSRAM和nvDFF[58-62]

    图  9  LiM实现逻辑计算的原理、全动态FeFET LiM架构及其不同读取操作[63]

    图  10  基于FeFET的MVM CiM架构、原理及单元[64]

    图  11  基于FeFET的4T-2FeFET和2T-1C XNOR单元及阵列[67,68]

    图  12  基于FeFET的不同TCAM单元[71-75]

    表  1  不同存储阵列的关键参数和性能指标对比

    存储器类型SRAM[34]eDRAM[35]eFlash[36]RRAM[5,6]STT-MRAM[7,8]PCM[9,37]FeRAM[38]FeFET[21,25]
    单元面积 (F2)120~1504040~6010~3010~3010~3030~4010~30
    单元结构6T1T-1C1T1T-1R1T-1MTJ1T-1PCM1T-1C1T
    易失/非易失性易失易失非易失非易失非易失非易失非易失非易失
    写入电压 (V)0.7-1.00.8-1.1~10<2~1<3<3<4
    写入能量~1 fJ~10 fJ~100 pJ~1 pJ~5 pJ~10 pJ~100 fJ~10 fJ
    写入速度0.5~0.8 ns~0.8 ns0.01-4 ms<10 ns<20 ns<100 ns<10 ns<10 ns
    读取速度 (ns)0.5~0.8~0.8~10<10<10~15<10<10
    阵列寿命>1016>1016104-105>106>1014>108>1012>105
    器件寿命>1016>1016104-105>1012>1015>1012>1014>1012
    器件偏差
    开关比
    读破坏性
    量产情况TSMC 3 nm
    三星 3 nm
    Intel 4
    TSMC 40 nm
    三星 45 nm
    Intel 22 nm
    TSMC 40 nm
    三星 45 nm
    TSMC
    40/22 nm
    TSMC 22 nm
    三星 28 nm
    GF 28 nm
    Intel 3D
    XPoint
    Fujitsu
    130 nm
    GF 22 nm
    未量产
    主要应用缓存大容量缓存eNVMeNVM缓存/eNVM内存/SSDeNVMeNVM
    下载: 导出CSV

    表  2  不同结构的FeFET存储阵列特性对比

    存储阵列结构密度写入策略写入能效电源电压写干扰其他特性主要应用前景技术成熟度
    1T NAND[39]极高两步写2VDD读干扰严重3D堆叠大容量存储阵列制备
    1T AND[39]两步写VDD两种写入策略eNVM/CiM测试样片
    传统1T NOR[39]两步写2VDD\CiM阵列制备
    漏极沟道耦合的1T NOR[40]一步写2VDD仅限sub-10 nm先进工艺存储仿真
    C-AND[41]两步写2VDD无法写入LRS无法应用仿真
    源/漏极浮空的1T NOR[42]两步写2VDD不对称、速度慢eNVM器件
    整行擦除的1T NOR[10]两步写2VDD\eNVM/CiM器件
    对角式1T NOR[10]两步写2VDD\eNVM器件
    栅极选通的2T[43]一步写2VDD\eNVM/CiM仿真
    源极选通的2T[44]两步写VDD\非易失处理/eNVM仿真
    3T[44]两步写VDD\非易失处理/eNVM仿真
    下载: 导出CSV

    表  3  传统SRAM TCAM和基于FeFET的TCAM主要指标对比

    TCAM结构匹配线类型单元面积 (μm2)搜索延时 (ps)搜索能量 (fJ/bit)可靠性
    16T SRAM[73]NOR1.125821.00
    4T-2FeFET[71]NOR0.6510220.46
    2FeFET[72]NOR0.153410.35
    2T-2FeFET-1C[74]NOR1.902693.89
    2T-2FeFET[75]NAND0.4274780.79
    2T-2FeFET[75]NOR0.4510180.79
    下载: 导出CSV
  • [1] SALAHUDDIN S, NI Kai, and DATTA S. The era of hyper-scaling in electronics[J]. Nature Electronics, 2018, 1(8): 442–450. doi: 10.1038/s41928-018-0117-x
    [2] REUTHER A, MICHALEAS P, JONES M, et al. AI accelerator survey and trends[C]. 2021 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, USA, 2021: 1–9.
    [3] LI Xueqing and LAI Longqiang. Nonvolatile memory and computing using emerging ferroelectric transistors[C]. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 2018: 750–755.
    [4] CHANG C H, CHANG V S, PAN K H, et al. Critical process features enabling aggressive contacted gate pitch scaling for 3nm CMOS technology and beyond[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 27.1. 1–27.1. 4.
    [5] REHMAN M M, REHMAN H M M U, GUL J Z, et al. Decade of 2D-materials-based RRAM devices: A review[J]. Science and Technology of Advanced Materials, 2020, 21(1): 147–186. doi: 10.1080/14686996.2020.1730236
    [6] CHEN Zixuan, WU Huaqiang, GAO Bin, et al. Performance improvements by SL-current limiter and novel programming methods on 16MB RRAM chip[C]. 2017 IEEE International Memory Workshop (IMW), Monterey, USA, 2017: 1–4.
    [7] IKEGAWA S, NAGEL K, MANCOFF F B, et al. High-speed (400MB/s) and low-BER STT-MRAM technology for industrial applications[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 10.4. 1–10.4. 4.
    [8] LEE T Y, LEE J M, KIM M K, et al. World-most energy-efficient MRAM technology for non-volatile RAM applications[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 10.7. 1–10.7. 4.
    [9] MIN D, PARK J, WEBER O, et al. 18nm FDSOI technology platform embedding PCM & innovative continuous-active construct enhancing performance for leading-edge MCU applications[C]. 2021 IEEE International Electron Devices Meeting, San Francisco, USA, 2021: 13.1. 1–13.1. 4.
    [10] XIAO Yi, XU Yixin, JIANG Zhouhang, et al. On the write schemes and efficiency of FeFET 1T NOR array for embedded nonvolatile memory and beyond[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 13.6. 1–13.6. 4.
    [11] DUTTA S, YE H, CHAKRABORTY W, et al. Monolithic 3D integration of high endurance multi-bit ferroelectric FET for accelerating compute-in-memory[C]. 2020 IEEE International Electron Devices Meeting, San Francisco, USA, 2020: 36.4. 1–36.4. 4.
    [12] MULAOSMANOVIC H, BREYER E T, DÜNKEL S, et al. Ferroelectric field-effect transistors based on HfO2: A review[J]. Nanotechnology, 2021, 32(50): 502002. doi: 10.1088/1361-6528/ac189f
    [13] VALASEK J. Piezo-electric and allied phenomena in Rochelle salt[J]. Physical Review, 1921, 17(4): 475–481. doi: 10.1103/PhysRev.17.475
    [14] MORTON J A. Electrical switching and storage[P]. US Patent, US-2791761-A, 1957-05-07.
    [15] MOLL J L and TARUI Y. A new solid state memory resistor[J]. IEEE Transactions on Electron Devices, 1963, 10(5): 338. doi: 10.1109/T-ED.1963.15245
    [16] HIGUMA Y, MATSUI Y, OKUYAMA M, et al. "MFS FET" -a new type of nonvolatile memory switch using PLZT film[J]. Japanese Journal of Applied Physics, 1978, 17(S1): 209–214. doi: 10.7567/JJAPS.17S1.209
    [17] BATRA I P, WURFEL P, and SILVERMAN B D. Phase transition, stability, and depolarization field in ferroelectric thin films[J]. Physical Review B, 1973, 8(7): 3257–3265. doi: 10.1103/PhysRevB.8.3257
    [18] WU S Y. A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor[J]. IEEE Transactions on Electron Devices, 1974, 21(8): 499–504. doi: 10.1109/T-ED.1974.17955
    [19] KHAN A I, KESHAVARZI A, and DATTA S. The future of ferroelectric field-effect transistor technology[J]. Nature Electronics, 2020, 3(10): 588–597. doi: 10.1038/s41928-020-00492-7
    [20] BÖSCKE T S, MÜLLER J, BRÄUHAUS D, et al. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors[C]. 2011 International Electron Devices Meeting, Washington, USA, 2011: 24.5. 1–24.5. 4.
    [21] DÜNKEL S, TRENTZSCH M, RICHTER R, et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 19.7. 1–19.7. 4.
    [22] FU Tianyue, ZENG Min, LIU Shiyuan, et al. Record-high 2Pr=60 μC/cm2 by Sub-5ns switching pulse in ferroelectric lanthanum-doped HfO2 with large single grain of orthorhombic phase >38 nm[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 6.5. 1–6.5. 4.
    [23] JERRY M, AZIZ A, NI K, et al. A threshold switch augmented hybrid-FeFET(H-FeFET) with enhanced read distinguishability and reduced programming voltage for non-volatile memory applications[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 129–130.
    [24] ZHOU Yuejia, LIANG Zhongxin, LUO Wenpu, et al. Ferroelectric and interlayer co-optimization with in-depth analysis for high endurance FeFET[C]. 2022 International Electron Devices Meeting, San Francisco, USA, 2022: 6.2. 1–6.2.4.
    [25] SHARMA A A, DOYLE B, YOO H J, et al. High speed memory operation in channel-last, back-gated ferroelectric transistors[C]. 2020 IEEE International Electron Devices Meeting, San Francisco, USA, 2020: 18.5. 1–18.5. 4.
    [26] ZHENG Zijie, SUN Chen, JIAO Leming, et al. Boosting the memory window of the BEOL-compatible MFMIS ferroelectric/ anti-ferroelectric FETs by charge injection[C]. 2022 IEEE Symposium on VLSI Technology and Circuits, Honolulu, USA, 2022: 389–390.
    [27] MULAOSMANOVIC H, DÜNKEL S, TRENTZSCH M, et al. Investigation of accumulative switching in ferroelectric FETs: Enabling universal modeling of the switching behavior[J]. IEEE Transactions on Electron Devices, 2020, 67(12): 5804–5809. doi: 10.1109/TED.2020.3031249
    [28] BAE J H, KWON D, JEON N, et al. Highly scaled, high endurance, Ω-gate, nanowire ferroelectric FET memory transistors[J]. IEEE Electron Device Letters, 2020, 41(11): 1637–1640. doi: 10.1109/LED.2020.3028339
    [29] YAN S C, LAN G M, SUN C J, et al. High speed and large memory window ferroelectric HfZrO2 FinFET for high-density nonvolatile memory[J]. IEEE Electron Device Letters, 2021, 42(9): 1307–1310. doi: 10.1109/LED.2021.3097777
    [30] LIAO C Y, HSIANG K Y, LOU Z F, et al. Endurance > 1011 cycling of 3D GAA nanosheet ferroelectric FET with stacked HfZrO2 to homogenize corner field toward mitigate dead zone for high-density eNVM[C]. 2022 IEEE Symposium on VLSI Technology and Circuits, Honolulu, USA, 2022: 1–2.
    [31] AZIZ A, GHOSH S, DATTA S, et al. Physics-based circuit-compatible SPICE model for ferroelectric transistors[J]. IEEE Electron Device Letters, 2016, 37(6): 805–808. doi: 10.1109/LED.2016.2558149
    [32] NI Kai, JERRY M, SMITH J A, et al. A circuit compatible accurate compact model for ferroelectric-FETs[C]. 2018 IEEE Symposium on VLSI Technology, Honolulu, USA, 2018: 131–132.
    [33] DENG Shan, YIN Guodong, CHAKRABORTY W, et al. A comprehensive model for ferroelectric FET capturing the key behaviors: Scalability, variation, stochasticity, and accumulation[C]. 2020 IEEE Symposium on VLSI Technology, Honolulu, USA, 2020: 1–2.
    [34] SONG T, RIM W, KIM H, et al. 24.3 a 3nm gate-all-around SRAM featuring an adaptive dual-BL and an adaptive cell-power assist circuit[C]. 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 338–340.
    [35] SALIGRAM R, DATTA S, and RAYCHOWDHURY A. CryoMem: A 4K-300K 1.3GHz eDRAM macro with hybrid 2T-gain-cell in a 28nm logic process for cryogenic applications[C]. 2021 IEEE Custom Integrated Circuits Conference, Austin, USA, 2021: 1–2.
    [36] JOURBA S, BOLLON N, DECOBERT C, et al. Performance and reliability of 4 Mb eFLASH memory array featuring 28 nm split-gate cell with HKMG select transistor[C]. 2020 IEEE International Memory Workshop, Dresden, Germany, 2020: 1–4.
    [37] SONG Z T, CAI D L, LI X, et al. High endurance phase change memory chip implemented based on carbon-doped Ge2Sb2Te5 in 40 nm node for embedded application[C]. 2018 IEEE International Electron Devices Meeting, San Francisco, USA, 2018: 27.5. 1–27.5. 4.
    [38] YANG Jianguo, LUO Qing, XUE Xiaoyong, et al. A 9Mb HZO-based embedded FeRAM with 1012-cycle endurance and 5/7ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier[C]. 2023 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2023: 1–3.
    [39] ULLMANN M, GOEBEL H, HOENIGSCHMID H, et al. Disturb free programming scheme for single transistor ferroelectric memory arrays[J]. Integrated Ferroelectrics, 2001, 34(1/4): 155–164. doi: 10.1080/10584580108012885
    [40] SHARMA A and ROY K. 1T non-volatile memory design using sub-10nm ferroelectric FETs[J]. IEEE Electron Device Letters, 2018, 39(3): 359–362. doi: 10.1109/LED.2018.2797887
    [41] DAHAN M M, BREYER E T, SLESAZECK S, et al. C-AND: Mixed writing scheme for disturb reduction in 1T ferroelectric FET memory[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(4): 1595–1605. doi: 10.1109/TCSI.2021.3139736
    [42] JIANG Zhouhang, ZHAO Zijian, DENG Shan, et al. On the feasibility of 1T ferroelectric FET memory array[J]. IEEE Transactions on Electron Devices, 2022, 69(12): 6722–6730. doi: 10.1109/TED.2022.3216819
    [43] GEORGE S, MA Kaisheng, AZIZ A, et al. Nonvolatile memory design based on ferroelectric FETs[C]. 2016 53rd ACM/EDAC/IEEE Design Automation Conference, Austin, USA, 2016: 1–6.
    [44] LI Xueqing, WU Juejian, NI Kai, et al. Design of 2T/cell and 3T/cell nonvolatile memories with emerging ferroelectric FETs[J]. IEEE Design & Test, 2019, 36(3): 39–45. doi: 10.1109/MDAT.2019.2902094
    [45] NI Kai, LI Xueqing, SMITH J A, et al. Write disturb in ferroelectric FETs and its implication for 1T-FeFET AND memory arrays[J]. IEEE Electron Device Letters, 2018, 39(11): 1656–1659. doi: 10.1109/LED.2018.2872347
    [46] GEORGE S, LI Xueqing, LIAO M J, et al. Symmetric 2-D-memory access to multidimensional data[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(6): 1040–1050. doi: 10.1109/TVLSI.2018.2801302
    [47] WU Juejian, ZHONG Hongtao, NI Kai, et al. A 3T/cell practical embedded nonvolatile memory supporting symmetric read and write access based on ferroelectric FETs[C]. The 56th Annual Design Automation Conference 2019, Las Vegas, USA, 2019: 82.
    [48] MULAOSMANOVIC H, SLESAZECK S, OCKER J, et al. Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells[C]. 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015: 26.8. 1–26.8. 3.
    [49] WU Juejian, XU Yixin, XUE Bowen, et al. Adaptive circuit approaches to low-power multi-level/cell FeFET memory[C]. 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), Beijing, China, 2020: 407–413.
    [50] GUO An, SI Xin, CHEN Xi, et al. A 28nm 64-kb 31.6-TFLOPS/W digital-domain floating-point-computing-unit and double-bit 6T-SRAM computing-in-memory macro for floating-point CNNs[C]. 2023 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2023: 128–130.
    [51] XIE Shanshan, NI Can, SAYAL A, et al. 16.2 eDRAM-CIM: Compute-in-memory design with reconfigurable embedded-dynamic-memory array realizing adaptive data converters and charge-domain computing[C]. 2021 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2021: 248–250.
    [52] YE Wang, WANG Linfang, ZHOU Zhidao, et al. A 28-nm RRAM computing-in-memory macro using weighted hybrid 2T1R cell array and reference subtracting sense amplifier for AI edge inference[J]. IEEE Journal of Solid-State Circuits, To be published.
    [53] CAI Hao, BIAN Zhongjian, HOU Yaoru, et al. 33.4 A 28nm 2Mb STT-MRAM computing-in-memory macro with a refined bit-cell and 22.4 - 41.5TOPS/W for AI inference[C]. 2023 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2023: 500–502.
    [54] CAI Hao, GUO Yanan, LIU Bo, et al. Proposal of analog in-memory computing with magnified tunnel magnetoresistance ratio and universal STT-MRAM cell[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(4): 1519–1531. doi: 10.1109/TCSI.2022.3140769
    [55] CAI Hao, BIAN Zhongjian, FAN Zhonghua, et al. Commodity bit-cell sponsored MRAM interaction design for binary neural network[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1721–1726. doi: 10.1109/TED.2021.3134588
    [56] REIS D, NIEMIER M, and HU X S. Computing in memory with FeFETs[C]. The International Symposium on Low Power Electronics and Design (ISLPED '18), Seattle, USA, 2018: 24.
    [57] YIN Xunzhao, AZIZ A, NAHAS J, et al. Exploiting ferroelectric FETs for low-power non-volatile logic-in-memory circuits[C]. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, USA, 2016: 1–8.
    [58] LI Xueqing, MA Kaisheng, GEORGE S, et al. Design of nonvolatile SRAM with ferroelectric FETs for energy-efficient backup and restore[J]. IEEE Transactions on Electron Devices, 2017, 64(7): 3037–3040. doi: 10.1109/TED.2017.2707664
    [59] WANG Jianfeng, XIU Nuo, WU Juejian, et al. An 8T/Cell FeFET-based nonvolatile SRAM with improved density and sub-fJ backup and restore energy[C]. 2022 IEEE International Symposium on Circuits and Systems, Austin, USA, 2022: 3408–3412.
    [60] LI Xueqing, SAMPSON J, KHAN A, et al. Enabling energy-efficient nonvolatile computing with negative capacitance FET[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3452–3458. doi: 10.1109/TED.2017.2716338
    [61] LI Xueqing, GEORGE S, MA Kaisheng, et al. Advancing nonvolatile computing with nonvolatile NCFET latches and flip-flops[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2017, 64(11): 2907–2919. doi: 10.1109/TCSI.2017.2702741
    [62] LI Xueqing, GEORGE S, LIANG Yuhua, et al. Lowering area overheads for FeFET-based energy-efficient nonvolatile flip-flops[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2670–2674. doi: 10.1109/TED.2018.2829348
    [63] TANG Wenjun, LEE M, WU Juejian, et al. FeFET-based logic-in-memory supporting SA-free write-back and fully dynamic access with reduced bitline charging activity and recycled bitline charge[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(6): 2398–2411. doi: 10.1109/TCSI.2023.3251961
    [64] JERRY M, CHEN P Y, ZHANG Jianchi, et al. Ferroelectric FET analog synapse for acceleration of deep neural network training[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 6.2. 1–6.2. 4.
    [65] SOLIMAN T, MÜLLER F, KIRCHNER T, et al. Ultra-low power flexible precision FeFET based analog in-memory computing[C]. 2020 IEEE International Electron Devices Meeting, San Francisco, USA, 2020: 29.2. 1–29.2. 4.
    [66] SAITO D, KOBAYASHI T, KOGA H, et al. Analog in-memory computing in FeFET-based 1T1R array for edge AI applications[C]. 2021 Symposium on VLSI Technology, Kyoto, Japan, 2021: 1–2.
    [67] CHEN Xiaoming, YIN Xunzhao, NIEMIER M, et al. Design and optimization of FeFET-based crossbars for binary convolution neural networks[C]. 2018 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2018: 1205–1210.
    [68] YIN Guodong, CAI Yi, WU Juejian, et al. Enabling lower-power charge-domain nonvolatile in-memory computing with ferroelectric FETs[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(7): 2262–2266. doi: 10.1109/TCSII.2021.3049844
    [69] DE S, MÜLLER F, LALENI N, et al. Demonstration of multiply-accumulate operation with 28 nm FeFET crossbar array[J]. IEEE Electron Device Letters, 2022, 43(12): 2081–2084. doi: 10.1109/LED.2022.3216558
    [70] SOLIMAN T, CHATTERJEE S, LALENI N, et al. First demonstration of in-memory computing crossbar using multi-level cell FeFET[EB/OL]. https://doi.org/10.21203/rs.3.rs-2948718/v1.
    [71] YIN Xunzhao, NIEMIER M, and HU X S. Design and benchmarking of ferroelectric FET based TCAM[C]. Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 2017: 1444–1449.
    [72] YIN Xunzhao, NI Kai, REIS D, et al. An ultra-dense 2FeFET TCAM design based on a multi-domain FeFET model[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(9): 1577–1581. doi: 10.1109/TCSII.2018.2889225
    [73] NI Kai, YIN Xunzhao, LAGUNA A F, et al. Ferroelectric ternary content-addressable memory for one-shot learning[J]. Nature Electronics, 2019, 2(11): 521–529. doi: 10.1038/s41928-019-0321-3
    [74] MA Xiaoyang, ZHONG Hongtao, XIU Nuo, et al. CapCAM: A multilevel capacitive content addressable memory for high-accuracy and high-scalability search and compute applications[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(11): 1770–1782. doi: 10.1109/TVLSI.2022.3198492
    [75] GEORGE S, JAO N, RAMANATHAN A K, et al. Integrated CAM-RAM functionality using ferroelectric FETs[C]. 2020 21st International Symposium on Quality Electronic Design, Santa Clara, USA, 2020: 81–86.
    [76] KAZEMI A, MÜLLER F, SHARIFI M M, et al. Achieving software-equivalent accuracy for hyperdimensional computing with ferroelectric-based in-memory computing[J]. Scientific Reports, 2022, 12(1): 19201. doi: 10.1038/s41598-022-23116-w
    [77] LIU Liu, KUMAR S, THOMANN S, et al. Compact and high-performance TCAM based on scaled double-gate FeFETs[EB/OL].https://arxiv.org/pdf/2304.03868.pdf.2023.4, 2023.
    [78] LIU Liu, LAGUNA A F, RAJAEI R, et al. A reconfigurable FeFET content addressable memory for multi-state hamming distance[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2023, 70(6): 2356–2369. doi: 10.1109/TCSI.2023.3259940
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  2005
  • HTML全文浏览量:  1224
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-11
  • 录用日期:  2023-08-15
  • 网络出版日期:  2023-08-19
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回