高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助的抗干扰安全通信系统鲁棒资源分配算法

席兵 冯彦博 邓炳光 张治中

席兵, 冯彦博, 邓炳光, 张治中. 智能反射面辅助的抗干扰安全通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(3): 875-885. doi: 10.11999/JEIT230343
引用本文: 席兵, 冯彦博, 邓炳光, 张治中. 智能反射面辅助的抗干扰安全通信系统鲁棒资源分配算法[J]. 电子与信息学报, 2024, 46(3): 875-885. doi: 10.11999/JEIT230343
XI Bing, FENG Yanbo, DENG Bingguang, ZHANG Zhizhong. A Robust Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Anti-jamming Secure Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(3): 875-885. doi: 10.11999/JEIT230343
Citation: XI Bing, FENG Yanbo, DENG Bingguang, ZHANG Zhizhong. A Robust Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Anti-jamming Secure Communication Systems[J]. Journal of Electronics & Information Technology, 2024, 46(3): 875-885. doi: 10.11999/JEIT230343

智能反射面辅助的抗干扰安全通信系统鲁棒资源分配算法

doi: 10.11999/JEIT230343
基金项目: 国家自然科学基金(61831002, 61901075)
详细信息
    作者简介:

    席兵:男,副教授,硕导,研究方向为数字信号处理、通信网络测试及优化技术等

    冯彦博:男,硕士生,研究方向为移动通信技术、智能反射面和鲁棒资源分配等

    邓炳光:男,副教授,硕导,研究方向为通信网与测试技术、仪器科学与技术等

    张治中:男,教授,博导,研究方向为LTE/5G/6G移动通信与信息处理、通信网测试及仪表技术、移动大数据、物联网等

    通讯作者:

    席兵 xibing@cqupt.edu.cn

  • 中图分类号: TN929.5

A Robust Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Anti-jamming Secure Communication Systems

Funds: The National Natural Science Foundation of China (61831002, 61901075)
  • 摘要: 为了解决恶意干扰攻击、窃听和不完美信道状态信息造成的通信质量降低和安全性差等问题,该文提出一种智能反射面(IRS)辅助的抗干扰安全通信系统鲁棒资源分配算法。首先,基于合法用户的最小安全速率约束、最大发射功率约束和IRS相移约束,在非法节点不完美信道状态信息、干扰器波束成形向量未知的情况下,构建了一个联合优化基站的波束成形向量、人工噪声的协方差矩阵和IRS的相移矩阵的鲁棒资源分配问题。其次,为了求解该非凸问题,利用交替优化、Cauchy-Schwarz不等式、连续凸逼近和泰勒级数展开等方法,将原问题转化为易于求解的凸优化问题。仿真结果表明,与传统算法相比所提算法能有效提高系统安全性、降低功率开销、提高抗干扰裕度,且在一定信道误差范围内能够减低约35%的保密中断概率,具有较强的鲁棒性。
  • 图  1  系统模型

    图  2  和安全速率收敛图

    图  3  最大发射功率与和安全速率的关系

    图  4  IRS反射单元个数与和安全速率的关系

    图  5  干扰功率与和安全速率的关系

    图  6  窃听者个数与和安全速率的关系

    图  7  窃听者分布与和安全速率关系

    图  8  最小安全速率与和安全速率的关系

    图  9  保密中断概率与和信道误差的关系

    算法1 基于迭代的和安全速率最大化算法
     初始化参数$\{ {\boldsymbol{W}}_k^{(0)}\} $, $ {{\boldsymbol{Z}}^{(0)}} $, ${{\boldsymbol{v}}^{(0)} }$,$ {(y_k^2)^{(0)}} $, $ {(y_k^3)^{(0)}} $, $ {({\tau _{k,m}})^{(0)}} $,$ {(\chi _{k,m}^1)^{(0)}} $,设置迭代最大次数、收敛精度、最小安全速率约束松弛变量$ \psi $的最大值$ {\psi ^{\max }} $
     重复
     通过给定的${{\boldsymbol{v}}^{(n - 1)} }$, $ {(y_k^2)^{(2n - 1)}} $, $ {(y_k^3)^{(2n - 1)}} $, $ {({\tau _{k,m}})^{(2n - 1)}} $, $ {(\chi _{k,m}^1)^{(2n - 1)}} $求解问题$({\rm{P}}3)$,获得$\{ {\boldsymbol{W}}_k^{(n)}\} $, $ {{\boldsymbol{Z}}^{(n)}} $, $ {(y_k^2)^{(2n)}} $, $ {(y_k^3)^{(2n)}} $,
     $ {({\tau _{k,m}})^{(2n)}} $, $ {(\chi _{k,m}^1)^{(2n)}} $
     通过$\{ {\boldsymbol{W}}_k^{(n)}\} $, $ {{\boldsymbol{Z}}^{(n)}} $,${{\boldsymbol{v}}^{(n - 1)} }$,$ {(y_k^2)^{(2n)}} $, $ {(y_k^3)^{(2n)}} $,$ {({\tau _{k,m}})^{(2n)}} $, $ {(\chi _{k,m}^1)^{(2n)}} $求解$({\rm{P}}5)$,获得${{\boldsymbol{V}}^{(n)} }$, ${{\boldsymbol{v}}^{(n)} } = {\boldsymbol{V} }_{1:{N_{\rm{r} } },{N_{\rm{r} } } + 1}^{(n)}$,
     $ {(y_k^2)^{(2n + 1)}} $,$ {(y_k^3)^{(2n + 1)}} $, $ {({\tau _{k,m}})^{(2n + 1)}} $, $ {(\chi _{k,m}^1)^{(2n + 1)}} $,
     直到满足收敛精度或到达最大迭代次数
     判断$ {\psi ^{(n)}} \le {\psi ^{\max }} $,满足约束条件
    下载: 导出CSV
  • [1] ZOU Yulong, ZHU Jia, WANG Xianbin, et al. A survey on wireless security: Technical challenges, recent advances, and future trends[J]. Proceedings of the IEEE, 2016, 104(9): 1727–1765. doi: 10.1109/JPROC.2016.2558521.
    [2] GOEL S and NEGI R. Guaranteeing secrecy using artificial noise[J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2180–2189. doi: 10.1109/TWC.2008.060848.
    [3] LI Guoquan, ZHANG Hui, WANG Yuhui, et al. QoS guaranteed power minimization and beamforming for IRS-assisted NOMA systems[J]. IEEE Wireless Communications Letters, 2023, 12(3): 391–395. doi: 10.1109/LWC.2022.3189272.
    [4] KAWAI Y and SUGIURA S. QoS-constrained optimization of intelligent reflecting surface aided secure energy-efficient transmission[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5137–5142. doi: 10.1109/TVT.2021.3075685.
    [5] LI Baogang, WU Wenjing, LI Yonghui, et al. Intelligent reflecting surface and artificial-noise-assisted secure transmission of MEC system[J]. IEEE Internet of Things Journal, 2022, 9(13): 11477–11488. doi: 10.1109/JIOT.2021.3127534.
    [6] ZHOU Gui, PAN Cunhua, REN Hong, et al. A framewo202rk of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666.
    [7] SHEN Meng, LEI Xianfu, MATHIOPOULOS P T, et al. Robust beamforming design for IRS-aided secure communication systems under complete imperfect CSI[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8204–8209. doi: 10.1109/TVT.2023.3243115.
    [8] YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043.
    [9] JI Zhi, YANG Wendong, GUAN Xinrong, et al. Trajectory and transmit power optimization for IRS-assisted UAV communication under malicious jamming[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11262–11266. doi: 10.1109/TVT.2022.3187092.
    [10] SUN Yifu, AN Kang, LUO Junshan, et al. Outage constrained robust beamforming optimization for multiuser IRS-assisted anti-jamming communications with incomplete information[J]. IEEE Internet of Things Journal, 2022, 9(15): 13298–13314. doi: 10.1109/JIOT.2022.3140752.
    [11] 徐勇军, 符加劲, 黄琼, 等. 智能反射面辅助的多天线通信系统鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(1): 165–174.

    XU Yongjun, FU Jiajin, HUANG Qiong, et al. Robust Secure resource allocation algorithm for intelligent reflecting surface-assisted multi-antenna communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 165–174.
    [12] ZHOU Gui, PAN Cunhua, REN Hong, et al. Robust beamforming design for intelligent reflecting surface aided MISO communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1658–1662. doi: 10.1109/LWC.2020.3000490.
    [13] NIU Hehao, CHU Zheng, ZHOU Fuhui, et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69(9): 6170–6184. doi: 10.1109/TCOMM.2021.3085780.
    [14] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040.
    [15] SHEN Zhexian, XU Kui, and XIA Xiaochen. Beam-domain anti-jamming transmission for downlink massive MIMO systems: A stackelberg game perspective[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2727–2742. doi: 10.1109/TIFS.2021.3063632.
    [16] BOYD S P and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [17] GHARAVOL E A and LARSSON E G. The sign-definiteness lemma and its applications to robust transceiver optimization for multiuser MIMO systems[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 238–252. doi: 10.1109/TSP.2012.2222379.
    [18] XU Yongjun, XIE Hao, LIANG Chengchao, et al. Robust secure energy-efficiency optimization in SWIPT-aided heterogeneous networks with a nonlinear energy-harvesting model[J]. IEEE Internet of Things Journal, 2021, 8(19): 14908–14919. doi: 10.1109/JIOT.2021.3072965.
    [19] BOYD S, EL GHAOUI L, FERON E, et al. Linear Matrix Inequalities in System and Control Theory[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
    [20] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [21] BAHINGAYI E E and LEE K. Low-complexity beamforming algorithms for IRS-aided single-user massive MIMO mmWave systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9200–9211. doi: 10.1109/TWC.2022.3174154.
    [22] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  488
  • HTML全文浏览量:  201
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-09-10
  • 网络出版日期:  2023-09-14
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回