高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用细粒度采样的低开销双输出异或门真随机数发生器研究

姚亮 黄正峰 梁华国 鲁迎春

姚亮, 黄正峰, 梁华国, 鲁迎春. 利用细粒度采样的低开销双输出异或门真随机数发生器研究[J]. 电子与信息学报, 2023, 45(9): 3295-3301. doi: 10.11999/JEIT230304
引用本文: 姚亮, 黄正峰, 梁华国, 鲁迎春. 利用细粒度采样的低开销双输出异或门真随机数发生器研究[J]. 电子与信息学报, 2023, 45(9): 3295-3301. doi: 10.11999/JEIT230304
YAO Liang, HUANG Zhengfeng, LIANG Huaguo, LU Yingchun. Research on Low-overhead Dual-output XOR Gate True Random Number Generator Utilizing Fine-grained Sampling[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3295-3301. doi: 10.11999/JEIT230304
Citation: YAO Liang, HUANG Zhengfeng, LIANG Huaguo, LU Yingchun. Research on Low-overhead Dual-output XOR Gate True Random Number Generator Utilizing Fine-grained Sampling[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3295-3301. doi: 10.11999/JEIT230304

利用细粒度采样的低开销双输出异或门真随机数发生器研究

doi: 10.11999/JEIT230304
基金项目: 国家自然科学基金面上项目(62174048, 62274052),国家自然科学基金重大科研仪器研制项目(62027815),国家自然科学基金重点合作项目(61834006),中央高校基本科研业务费专项资金资助(JZ2022HGQA0233)
详细信息
    作者简介:

    姚亮:男,讲师,研究方向为硬件安全及集成电路设计

    黄正峰:男,教授,博士生导师,研究方向为集成电路容错设计、集成电路抗辐射加固设计及硬件安全

    梁华国:男,教授,研究方向为集成电路测试与设计

    鲁迎春:男,副教授,硕士生导师,研究方向为硬件安全

    通讯作者:

    鲁迎春 luyingchun@hfut.edu.cn

  • 中图分类号: TN402

Research on Low-overhead Dual-output XOR Gate True Random Number Generator Utilizing Fine-grained Sampling

Funds: The General Program of National Natural Science Foundation of China (62174048, 62274052), The Research and Development Project of Major Scientific Research Instruments of the National Natural Science Foundation of China (62027815), The National Natural Science Foundation of China Key Cooperation Project (61834006), The Special Fund for Basic Research Business Funds of Central Universities (JZ2022HGQA0233)
  • 摘要: 真随机数生成器(TRNG)是安全应用中的关键构建模块,能够为数据加密、随机数和初始化向量提供高质量的随机位。环形振荡器(RO)TRNG是一种广泛的应用设计,以支持各种与安全相关的应用。但是,在FPGA中实现RO TRNG时通常会产生很高的硬件开销。因此,一种基于双输出异或门单元的低开销RO TRNG在该文中被提出,仅使用单个可配置逻辑块即可构建TRNG的熵源。通过多相位细粒度采样机制,将电路抖动有效地采集捕捉到。所提RO TRNG在AMD Xilinx Viretx-6和Artix-7两款FPGA上进行实现与验证,实验结果表明,所提RO TRNG硬件开销低,能够产生质量满意的随机序列。
  • 图  1  细粒度采样示意图

    图  2  异或门逻辑单元

    图  3  提出的TRNG结构

    图  4  自相关测试

    图  5  Xilinx Virtex-6和Artix-7 FPGA上NIST SP800-90BNon-IID 9项测试结果

    图  6  Virtex-6上温度电压变化测试结果图

    表  1  Xilinx Virtex-6和Artix-7上NIST SP800-22测试结果

    NIST
    随机性测试项
    Virtex-6 FPGAArtix-7 FPGA
    P-valueProp.(%)P-valueProp(%)
    频率检验0.496 6051000.417146100
    累加和检验0.607 7151000.557145100
    块内频数检验0.470 0251000.341 22399
    游程检验0.717 631990.544 285100
    块内最长游程检测0.360 791000.439 51598
    2元矩阵秩检验0.166 8051000.636 79299
    离散傅里叶变换检验0.588 595980.409 091100
    非重叠模块匹配检测0.452 413990.452 517100
    重叠模块匹配检验0.480 3351000.544 09599
    通用统计检验0.395 3551000.678 43598
    近似熵检验0.329 119990.439 280100
    随机游动检验0.300 7401000.482 49399
    随机游动状态频数检验0.420 495990.480 785100
    序列检验0.246 0731000.186 504100
    线性复杂度检验0.430 2251000.419 696100
    下载: 导出CSV

    表  2  AIS-31的T8字节熵测试

    开发套件
    Virtex-6Artix-7
    熵值7.9986717.996367
    下载: 导出CSV

    表  3  相关TRNG的性能比较

    TRNG结构结构实验平台资源消耗吞吐量(Mbit/s)
    文献[18]STRVitex-5/6, Spartan-3E32LUTs 48DFFs32
    文献[9]DCMZynq-738LUTs 121DFF100
    文献[19]PLLKintex UltraScale1PLL 5Primitives 5Slice100
    文献[20]ROArtix-775LUTs 419DFFs120
    文献[21]FIGAROZynq-7866LUTs80
    本文M_DXORVirtex-6, Artix-73LUTs 4DFFs 1PLL100
    下载: 导出CSV
  • [1] HASSIJA V, CHAMOLA V, GUPTA V, et al. A survey on supply chain security: Application areas, security threats, and solution architectures[J]. IEEE Internet of Things Journal, 2021, 8(8): 6222–6246. doi: 10.1109/JIOT.2020.3025775
    [2] 魏子魁, 胡毅, 金鑫, 等. 一种低功耗高噪声源真随机数设计[J]. 电子与信息学报, 2020, 42(10): 2566–2572. doi: 10.11999/JEIT190719

    WEI Zikui, HU Yi, JIN Xin, et al. A true random number design of low power and high noise source[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2566–2572. doi: 10.11999/JEIT190719
    [3] LU Yingchun, LIANG Huaguo, YAO Liang, et al. Jitter-quantizing-based TRNG robust against PVT variations[J]. IEEE Access, 2020, 8: 108482–108490. doi: 10.1109/ACCESS.2020.3000231
    [4] RUKHIN A, SOTO J, NECHVATAL J, et al. A statistical test suite for random and pseudorandom number generators for cryptographic applications[R]. NIST Special Publication 800-22, 2010.
    [5] BARKER E, KELSEY J, and SECRETARY J B. NIST DRAFT special publication 800–90B recommendation for the entropy sources[OL]. https://www.nist.gov/news-events/news/2018/01/nist-announces-release-special-publication-800-906-recommendation-entropy.
    [6] KILLMANN W and SCHINDLE W. A proposal for: Functionality classes for random number generators[EB/OL]. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.html, 2011.
    [7] GRUJIC M and VERBAUWHEDE I. TROT: A three-edge ring oscillator based true random number generator with time-to-digital conversion[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(6): 2435–2448. doi: 10.1109/TCSI.2022.3158022
    [8] NALLA ANANDAKUMAR N, SANADHYA S K, and HASHMI M S. FPGA-based true random number generation using programmable delays in oscillator-rings[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2020, 67(3): 570–574. doi: 10.1109/TCSII.2019.2919891
    [9] FRUSTACI F, SPAGNOLO F, PERRI S, et al. A high-speed FPGA-based true random number generator using metastability with clock managers[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2023, 70(2): 756–760. doi: 10.1109/TCSII.2022.3211278
    [10] ZHU Shaofeng, XI Wei, FAN Limin, et al. Sequence-oriented stochastic model of RO-TRNGs for entropy evaluation[J]. Chinese Journal of Electronics, 2020, 29(2): 371–377. doi: 10.1049/cje.2019.12.010
    [11] WOLD K and PETROVIĆ S. Behavioral model of TRNG based on oscillator rings implemented in FPGA[C]. 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Cottbus, Germany, 2011: 163–166.
    [12] YAO Liang, LIANG Huaguo, ZHANG Hong, et al. A lightweight M_TRNG design based on MUX cell entropy using multiphase sampling[C]. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Singapore, 2022: 1–4.
    [13] LI Xinwei, SHEN Lei, and ZHAO Zhijin. Jitter test of multiphase DTTL[J]. Physics Procedia, 2012, 25: 623–629. doi: 10.1016/j.phpro.2012.03.135
    [14] CUI Jianguo, YI Maoxiang, CAO Di, et al. Design of true random number generator based on multi-stage feedback ring oscillator[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 1752–1756. doi: 10.1109/TCSII.2021.3111049
    [15] XILINX. Virtex-6 FPGA configurable logic block[R]. UG364 (v1.2), 2012.
    [16] 罗芳, 欧庆于, 周学广, 等. 故障扰动下振荡环型真随机数发生器安全特性及度量方法研究[J]. 电子与信息学报, 2022, 44(6): 2093–2100. doi: 10.11999/JEIT210328

    LUO Fang, OU Qingyu, ZHOU Xueguang, et al. Research on the security characteristic and metric method for ring oscillatro-based true random number generator under fault disturbance[J]. Journal of Electronics &Information Technology, 2022, 44(6): 2093–2100. doi: 10.11999/JEIT210328
    [17] MA Gaoliang, LIANG Huaguo, YAO Liang, et al. A low-cost high-efficiency true random number generator on FPGAs[C]. 2018 IEEE 27th Asian Test Symposium (ATS), Hefei, China, 2018: 54–58.
    [18] MARTIN H, PERIS-LOPEZ P, TAPIADOR J E, et al. A new TRNG based on coherent sampling with self-timed rings[J]. IEEE Transactions on Industrial Informatics, 2016, 12(1): 91–100. doi: 10.1109/TII.2015.2502183
    [19] DI PATRIZIO STANCHIERI G, DE MARCELLIS A, PALANGE E, et al. A true random number generator architecture based on a reduced number of FPGA primitives[J]. AEU - International Journal of Electronics and Communications, 2019, 105: 15–23. doi: 10.1016/j.aeue.2019.03.006
    [20] WANG Yonggang, HUI Cong, LIU Chong, et al. Theory and implementation of a very high throughput true random number generator in field programmable gate array[J]. Review of Scientific Instruments, 2016, 87(4): 044704. doi: 10.1063/1.4945564
    [21] DEMIR K and ERGUN S. Random number generators based on irregular sampling and Fibonacci-Galois ring oscillators[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2019, 66(10): 1718–1722. doi: 10.1109/TCSII.2019.2933280
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  78
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-08-16
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2023-09-27

目录

    /

    返回文章
    返回