[1] |
MA Jun, SONG Xinlin, JIN Wuyin, et al. Autapse-induced synchronization in a coupled neuronal network[J]. Chaos, Solitons & Fractals, 2015, 80: 31–38. doi: 10.1016/j.chaos.2015.02.005.
|
[2] |
TORRES J J, ELICES I, and MARRO J. Efficient transmission of subthreshold signals in complex networks of spiking neurons[J]. PLoS One, 2015, 10(3): e0121156. doi: 10.1371/journal.pone.0121156.
|
[3] |
BELYKH I, DE LANGE E, and HASLER M. Synchronization of bursting neurons: What matters in the network topology[J]. Physical Review Letters, 2005, 94(18): 188101. doi: 10.1103/PhysRevLett.94.188101.
|
[4] |
WIG G S, SCHLAGGAR B L, and PETERSEN S E. Concepts and principles in the analysis of brain networks[J]. Annals of the New York Academy of Sciences, 2011, 1224(1): 126–146. doi: 10.1111/j.1749-6632.2010.05947.x.
|
[5] |
IZHIKEVICH E M. Which model to use for cortical spiking neurons?[J]. IEEE Transactions on Neural Networks, 2004, 15(5): 1063–1070. doi: 10.1109/TNN.2004.832719.
|
[6] |
OZER M and EKMEKCI N H. Effect of channel noise on the time-course of recovery from inactivation of sodium channels[J]. Physics Letters A, 2005, 338(2): 150–154. doi: 10.1016/j.physleta.2005.02.039.
|
[7] |
HODGKIN A L and HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500–544. doi: 10.1113/jphysiol.1952.sp004764.
|
[8] |
FITZHUGH R. Impulses and physiological states in theoretical models of nerve membrane[J]. Biophysical Journal, 1961, 1(6): 445–466. doi: 10.1016/S0006-3495(61)86902-6.
|
[9] |
HINDMARSH J L and ROSE R M. A model of neuronal bursting using three coupled first order differential equations[J]. Proceedings of the Royal Society B:Biological Sciences, 1984, 221(1222): 87–102. doi: 10.1098/rspb.1984.0024.
|
[10] |
IZHIKEVICH E M. Simple model of spiking neurons[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569–1572. doi: 10.1109/TNN.2003.820440.
|
[11] |
马军. 功能神经元建模及动力学若干问题[J]. 广西师范大学学报:自然科学版, 2022, 40(5): 307–323. doi: 10.16088/j.issn.1001-6600.2021122301.MA Jun. Dynamics and model approach for functional neurons[J]. Journal of Guangxi Normal University:Natural Science Edition, 2022, 40(5): 307–323. doi: 10.16088/j.issn.1001-6600.2021122301.
|
[12] |
LIU Yong, XU Wanjiang, MA Jun, et al. A new photosensitive neuron model and its dynamics[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1387–1396. doi: 10.1631/FITEE.1900606.
|
[13] |
YAO Zhao, SUN Kehui, and HE Shaobo. Firing patterns in a fractional-order FithzHugh–Nagumo neuron model[J]. Nonlinear Dynamics, 2022, 110(2): 1807–1822. doi: 10.1007/s11071-022-07690-2.
|
[14] |
YANG Xin and ZHANG Guangjun. The synchronization behaviors of memristive synapse-coupled fractional-order neuronal networks[J]. IEEE Access, 2021, 9: 131844–131857. doi: 10.1109/ACCESS.2021.3115149.
|
[15] |
ABDELATY A M, FOUDA M E, and ELTAWIL A M. On numerical approximations of fractional-order spiking neuron models[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 105: 106078. doi: 10.1016/j.cnsns.2021.106078.
|
[16] |
谢盈, 朱志刚, 张晓锋, 等. 光电流驱动下非线性神经元电路的放电模式控制[J]. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676.XIE Ying, ZHU Zhigang, ZHANG Xiaofeng, et al. Control of firing mode in nonlinear neuron circuit driven by photocurrent[J]. Acta Physica Sinica, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676.
|
[17] |
WESTERLUND S and EKSTAM L. Capacitor theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 826–839. doi: 10.1109/94.326654.
|
[18] |
OLDHAM K B and SPANIER J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order[M]. Amsterdam: Elsevier, 1974.
|
[19] |
GAO Guanghua, SUN Zhizhong, and ZHANG Hongwei. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[J]. Journal of Computational Physics, 2014, 259: 33–50. doi: 10.1016/j.jcp.2013.11.017.
|