高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称谐振式甚低频发/接磁电天线耦合性能研究

王晓煜 张博焱 赵相晨 杨西杰 冯晴 曹振新

王晓煜, 张博焱, 赵相晨, 杨西杰, 冯晴, 曹振新. 对称谐振式甚低频发/接磁电天线耦合性能研究[J]. 电子与信息学报. doi: 10.11999/JEIT230247
引用本文: 王晓煜, 张博焱, 赵相晨, 杨西杰, 冯晴, 曹振新. 对称谐振式甚低频发/接磁电天线耦合性能研究[J]. 电子与信息学报. doi: 10.11999/JEIT230247
WANG Xiaoyu, ZHANG Boyan, ZHAO Xiangchen, YANG Xijie, FENG Qing, CAO Zhenxin. Research on Symmetrically Resonant VLF Transmit/Receive Magnetoelectric Antenna Coupling Performance[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230247
Citation: WANG Xiaoyu, ZHANG Boyan, ZHAO Xiangchen, YANG Xijie, FENG Qing, CAO Zhenxin. Research on Symmetrically Resonant VLF Transmit/Receive Magnetoelectric Antenna Coupling Performance[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230247

对称谐振式甚低频发/接磁电天线耦合性能研究

doi: 10.11999/JEIT230247
基金项目: 国家自然科学基金(51005029),国家重点研发项目(0120700),国家自然科学基金(52275407),,辽宁省自然科学基金(2023-MS-274)
详细信息
    作者简介:

    王晓煜:男,教授,研究方向为智能材料及结构等

    张博焱:男,硕士生,研究方向为甚低频小型化机械天线

    赵相晨:男,硕士生,研究方向为甚低频小型化机械天线

    杨西杰:男,硕士生,研究方向为低频无线通信

    冯晴:女,硕士生,研究方向为随机共振信号处理

    曹振新:男,教授,研究方向为天线理论和应用

    通讯作者:

    王晓煜 99925010@qq.com

  • 中图分类号: TN822

Research on Symmetrically Resonant VLF Transmit/Receive Magnetoelectric Antenna Coupling Performance

Funds: National Natural Science Foundation of China (51005029), National Key Research and Development Project (0120700), National Natural Science Foundation of China (52275407), Natural Science Foundation of Liaoning Province (2023-MS-274)
  • 摘要: 甚低频段由于低传播损耗特性,在远距离信号传输及军事通信方面有巨大潜力。传统天线庞大物理尺寸以及复杂网络匹配限制了低频天线通信的发展。磁电(ME)天线基于声波谐振原理可以突破尺寸极限且易于阻抗匹配,在甚低频段传输具有独特优势。基此设计了P/T/P结构的发射天线和T/P/T结构的接收天线组成的新型ME天线系统。依据磁机电耦合模型分析天线在接收/发射电磁波时的规律;依据辐射模型研究近场范围内天线磁场分布情况;以声波介导激励,实现ME天线在甚低频段的发/收通信实验。实验得到在谐振频率下,ME发射/接收天线在压电占比分别在0.66、0.34时,结构优化前较于优化后输出电压提升82.6%,通信距离提升42.2%;相较于同等尺寸电小天线辐射效率提高3个数量级;可实现传输速率为5bit/s的调制通信,依据结构优化实现了天线性能的提升。
  • 图  1  L-T模式复合材料示意图

    图  2  逆磁电效应等效电路示意图

    图  3  磁电效应等效电路示意图

    图  4  压电体积分数与磁电耦合响应曲线图

    图  5  低频通信系统结构示意图

    图  6  天线导纳和扫频示意图

    图  7  ME VLF通信实验测量系统图

    图  8  ME天线近场辐射方向示意图

    图  9  DC偏置磁场与磁感应强度关系图

    图  10  激励电压与磁感应强度实验图

    图  11  发/收天线输出电压与距离关系曲线图

    图  12  2FSK调制信号产生示意图

    表  1  ME天线材料参数

    Volume (mm3)$ {s}_{33}^{H}、{s}_{11}^{E} $(m2/N)$ {d}_{33}^{m} $ (m/A)
    $ {d}_{31}^{P} $ (C/N)
    $ {\rho }_{m}、{\rho }_{P} $
    (g/cm3)
    $ {Q}_{m}、{Q}_{P} $$\mu _{33}^T$、${\varepsilon _{33}}$
    Terfenol-D35×10×11.638×10-1114.86×10–992501062.8×10–7
    PZT-538×10×14.7×10-111.53×10–878006538×10–8
    下载: 导出CSV

    表  2  ME天线类型参数表

    类型Volume(T)Volume (P)压电体积分数
    T135×15×138×15×20.66
    T235×15×1.538×15×1.50.5
    T335×15×238×15×10.34
    下载: 导出CSV
  • [1] KRAMER B A, CHEN C C, LEE M, et al. Fundamental limits and design guidelines for miniaturizing ultra-wideband antennas[J]. IEEE Antennas and Propagation Magazine, 2009, 51(4): 57–69. doi: 10.1109/MAP.2009.5338684.
    [2] SKRIVERVIK A K, ZURCHER J F, STAUB O, et al. PCS antenna design: The challenge of miniaturization[J]. IEEE Antennas and Propagation Magazine, 2001, 43(4): 12–27. doi: 10.1109/74.951556.
    [3] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8.
    [4] 丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事, 2017(4): 71–73.
    [5] DING Hong. DARPA mechanical antenna project may revolutionize military communications[J]. Modern Military, 2017(4): 71–73. (查阅网上资料, 本条文献为第4条文献英文翻译, 请确认)(查阅网上资料, 未找到本条文献英文翻译, 请确认) .
    [6] BURCH H C, GARRAUD A, MITCHELL M F, et al. Experimental generation of ELF radio signals using a rotating magnet[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6265–6272. doi: 10.1109/TAP.2018.2869205.
    [7] GONG Shuhong, LIU Yu, and LIU Yi. A rotating-magnet based mechanical antenna (Rmbma) for Elf-Ulf wireless communication[J]. Progress in Electromagnetics Research M, 2018, 72: 125–133. doi: 10.2528/PIERM18070204.
    [8] LUONG K Q T and WANG Yuanxun. Analysis of dynamic magnetoelastic coupling in mechanically driven magnetoelectric antennas[J]. Sensors, 2022, 22(2): 455. doi: 10.3390/s22020455.
    [9] WAITZ T, SCHRANZ W, and TRÖSTER A. Nanoscale phase transformations in functional materials[M]. SAXENA A and PLANES A. Mesoscopic Phenomena in Multifunctional Materials. Berlin: Springer, 2014: 23–56. doi: 10.1007/978-3-642-55375-2_2.
    [10] ZAEIMBASHI M, NASROLLAHPOUR M, KHALIFA A, et al. Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing[J]. Nature Communications, 2021, 12(1): 3141. doi: 10.1038/s41467-021-23256-z.
    [11] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature Communications, 2019, 10(1): 1715. doi: 10.1038/s41467-019-09680-2.
    [12] HASSANIEN A E, BREEN M, LI Minghuang, et al. Acoustically driven electromagnetic radiating elements[J]. Scientific Reports, 2020, 10(1): 17006. doi: 10.1038/s41598-020-73973-6.
    [13] XU Jianchun, CAO Jinqing, GUO Menghao, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 761–767. doi: 10.1007/s42114-021-00278-1.
    [14] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact nems magnetoelectric antennas[J]. Nature Communications, 2017, 8(1): 296. doi: 10.1038/s41467-017-00343-8. (查阅网上资料,本条文献与第3条文献重复,请确认) .
    [15] DONG Cunzheng, HE Yifan, LI Menghui, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(3): 398–402. doi: 10.1109/LAWP.2020.2968604.
    [16] 彭春瑞, 李君儒, 钟慧, 等. 体声波磁电天线辐射性能的解析计算[J]. 压电与声光, 2020, 42(1): 34–37. doi: 10.11977/j.issn.1004-2474.2020.01.009.
    [17] PENG Chunrui, LI Junru, ZHONG Hui, et al. Analytical calculation of radiation performance of BAW magnetoelectric antenna[J]. Piezoelectrics & Acoustooptics, 2020, 42(1): 34–37. DOI: 10.11977/j.issn.1004-2474.2020.01.009. (查阅网上资料,本条文献为第16条文献英文翻译,请确认) .
    [18] XU Guokai, XIAO Shaoqiu, LI Yan, et al. Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite[J]. Physics Letters A, 2021, 385: 126959. doi: 10.1016/j.physleta.2020.126959.
    [19] XIAO Ning, WANG Yao, CHEN Lei, et al. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(1): 34–38. doi: 10.1109/LAWP.2022.3201070.
    [20] 阳昌海. 偏置磁场对超磁致伸缩/压电复合材料磁电效应影响的研究[D]. 重庆: 重庆大学, 2008.
    [21] YANG Changhai. Study on the influence of bias magnetic field on magnetoelectric effect of giant magnetostrictive/piezoelectric composite material[D]. Chongqing: Chongqing University, 2008. (查阅网上资料, 本条文献为第20条文献英文翻译, 请确认) .
    [22] 郁国良. 基于磁致伸缩/压电层状复合材料的磁电效应研究[D]. 成都: 电子科技大学, 2018.
    [23] YU Guoliang. Research on the magnetoelectric coupling effect of the laminated magnetostrictive/piezoelectric composites[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (查阅网上资料, 本条文献为第22条文献英文翻译, 请确认) .
    [24] ZHOU Jianping, MA Yuanjun, ZHANG Guangbin, et al. A uniform model for direct and converse magnetoelectric effect in laminated composite[J]. Applied Physics Letters, 2014, 104(20): 202904. doi: 10.1063/1.4878559.
    [25] LEI Lei and CHEN Xiangming. Magnetoelectric characteristics of a dual-mode magnetostrictive/piezoelectric bilayered composite[J]. Applied Physics Letters, 2008, 92(7): 072903. doi: 10.1063/1.2840177.
    [26] XU Junran, LEUNG C M, ZHUANG Xin, et al. A low frequency mechanical transmitter based on magnetoelectric heterostructures operated at their resonance frequency[J]. Sensors, 2019, 19(4): 853. doi: 10.3390/s19040853.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回