高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多目标跟踪中基于次模优化的轨迹片段生成方法

孙瑾 杜官明

孙瑾, 杜官明. 多目标跟踪中基于次模优化的轨迹片段生成方法[J]. 电子与信息学报, 2024, 46(3): 995-1004. doi: 10.11999/JEIT230208
引用本文: 孙瑾, 杜官明. 多目标跟踪中基于次模优化的轨迹片段生成方法[J]. 电子与信息学报, 2024, 46(3): 995-1004. doi: 10.11999/JEIT230208
SUN Jin, DU Guanming. Tracklet Generation Method by Submodular Optimization for Multi-Object Tracking[J]. Journal of Electronics & Information Technology, 2024, 46(3): 995-1004. doi: 10.11999/JEIT230208
Citation: SUN Jin, DU Guanming. Tracklet Generation Method by Submodular Optimization for Multi-Object Tracking[J]. Journal of Electronics & Information Technology, 2024, 46(3): 995-1004. doi: 10.11999/JEIT230208

多目标跟踪中基于次模优化的轨迹片段生成方法

doi: 10.11999/JEIT230208
基金项目: 国家自然科学基金(61702260)
详细信息
    作者简介:

    孙瑾:女,副教授,研究方向为计算机视觉、图像处理与分析

    杜官明:男,硕士生,研究方向为视频信息处理

    通讯作者:

    孙瑾 sunjinly@nuaa.edu.cn

  • 中图分类号: TN919.5; TP391.41

Tracklet Generation Method by Submodular Optimization for Multi-Object Tracking

Funds: The National Natural Science Foundation of China (61702260)
  • 摘要: 作为智能视觉任务的基础工作,多目标跟踪(MOT)一直是计算机视觉领域具有挑战性的课题之一。遮挡是影响跟踪准确性的主要因素,为此该文采用基于检测跟踪的思想,以轨迹片段为基础进行关联获取目标的完整轨迹;同时,为提高跟踪鲁棒性,该文将轨迹片段的生成问题转化为运筹学中的设施选址问题,并进而提出基于次模优化的轨迹片段生成方法。该方法融合梯度(HOG)和颜色(CN)两个互补特征进行目标表征,并根据运动信息设计权重系数提高目标匹配准确度,最后提出具有约束的次模最大化算法实现全局范围内的数据关联生成轨迹片段。通过在多个基准数据集上的对比实验,表明该文算法在保证性能的同时能有效处理遮挡问题。
  • 图  1  局部和全局数据关联说明

    图  2  轨迹片段生成过程示意图

    图  3  权重系数λ加入前后跟踪结果对比

    图  4  相似度权重系数λ

    图  5  基于次模优化的轨迹片段生成流程图

    图  6  MOT17-02数据集实验结果对比

    图  7  TUD-Crossing数据集实验结果对比

    图  8  PETS09-S2L1数据集实验结果对比

    算法1 基于次模优化的轨迹片段生成
     输入: 视频片段 Vm该视频片段包含K个图像帧
     输出: 生成的轨迹片段集合Tm={$ t_1^m $, $ t_2^m $, ···}
     初始化:i=1,j=1,k=1,α=0.85;Tm=Ø; 检测目标集Dm=SmRm,其中初始目标集$ {S_m} = \{ d_{mk}^1,d_{mk}^2, \cdots ,d_{mk}^{{n_k}}\} $,候选集目标集
     ${R_m} = \{ d_{m(k + 1)}^1, \cdots ,d_{m(k + 1)}^{{n_{k + 1}}}, \cdots ,d_{mK}^1, \cdots ,d_{mK}^{{n_K}}\} $
     执行:
     (1) 提取Dm中每个检测目标的HOG和CN特征;
     (2) while k<=K
     (3)   根据式(14)计算初始目标集Sm与候选目标集Rm中目标间的相似度
     (4)   while i<=ni
     (5)     $ t^i_m $ = Ø
     (6)     while j<K
     (7)      在候选目标集Rm中选择与初始目标$ d^i_{mk} $具有最大相似度的目标$ d^p_{mr} $,对应相似度为sip
     (8)      if (sip > w)
     (9)       $ t^i_m $ ← {$ d^p_{mr}$}∪ $t^i_m $
     (10)       从候选目标集中删除$ d^p_{mr} $所在第r帧的其他目标
     (11)       j++
     (12)      end if
     (13)     end while
     (14)     i++
     (15)     Tm ← {$ t^i_m $}∪Tm
     (16)   end while
     (17)    k=k+1
     (18)    将第k帧中未被匹配关联的目标组成初始目标集合$ {S_m} = \{ d_{mk}^1,d_{mk}^2, \cdots ,d_{mk}^{{n_k}}\} $
     (19) end while
    下载: 导出CSV

    表  1  PETS09-S2L1和TUD数据集跟踪性能对比

    数据集 算法 MOTA(%)↑ MOTP(%)↑ MT(%)↑ ML(%)↓ IDS↓
    PETS09-S2L1 Intra Track[29] 81.6 79.4 684
    R1TA Track[30] 96.0 82.0 100.0 0 14
    DSC[31] 90.0 56.8 89.5 0 15
    本文方法 96.3 72.3 96.2 0 12
    TUD-Stadtmitte GMMCP[12] 82.4 73.9 0 3
    CNNTCM[27] 80.8 90.0 0
    R1TA Track[30] 84.8 89.6 70.0
    DSC[31] 72.4 52.6 60.0 0 10
    本文方法 90.6 87.6 90.0 0 0
    TUD-Crossing GMMCP[12] 91.9 70.0 0 7
    SUBM[16] 60.2 77.2 15.4 7.7 32
    本文方法 92.4 75.6 18.6 0 2
    下载: 导出CSV

    表  2  MOT17数据集跟踪性能对比

    算法 MOTA(%)↑ IDF1↑ MOTP(%)↑ MT(%)↑ ML(%)↓ IDS↓
    IOU[11] 45.5 39.4 76.9 15.7 40.5 5988
    EDMT[32] 50.0 51.3 77.3 21.6 36.3 2264
    jCC[33] 51.2 54.5 75.9 20.9 37.0 1802
    LPT[9] 57.3 57.7 23.3 36.9 1424
    MPNTrack[34] 58.8 61.7 28.8 33.5 1185
    JBNOT[35] 52.6 50.8 77.1 19.7 35.8 3050
    TT17[36] 54.9 63.1 24.4 38.1 1088
    Deep-TAMA[37] 50.3 53.5 19.2 37.5 2192
    本文方法 56.4 58.2 78.1 21.1 32.8 1097
    下载: 导出CSV
  • [1] ZHAO Hangyue, ZHANG Hongpu, and ZHAO Yanyun. YOLOv7-sea: Object detection of maritime UAV images based on improved YOLOv7[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, USA, 2023: 233–238. doi: 10.1109/WACVW58289.2023.00029.
    [2] GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
    [3] ZHONG Xionghu, TAY W P, LENG Mei, et al. TDOA-FDOA based multiple target detection and tracking in the presence of measurement errors and biases[C]. 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications, Edinburgh, UK, 2016: 1–6. doi: 10.1109/SPAWC.2016.7536786.
    [4] BEWLEY A, GE Zongyuan, OTT L, et al. Simple online and realtime tracking[C]. 2016 IEEE International Conference on Image Processing, Phoenix, USA, 2016: 3464–3468. doi: 10.1109/ICIP.2016.7533003.
    [5] WU Huiling and LI Weihai. Robust online multi-object tracking based on KCF trackers and reassignment[C]. 2016 IEEE Global Conference on Signal and Information Processing, Washington, USA, 2016: 124–128. doi: 10.1109/GlobalSIP.2016.7905816.
    [6] LIU Huajun, ZHANG Hui, and MERTZ C. DeepDA: LSTM-based deep data association network for multi-targets tracking in clutter[C]. 2019 22th International Conference on Information Fusion, Ottawa, Canada, 2019: 1–8. doi: 10.23919/FUSION43075.2019.9011217.
    [7] LENZ P, GEIGER A, and URTASUN R. Followme: Efficient online min-cost flow tracking with bounded memory and computation[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 4364–4372. doi: 10.1109/ICCV.2015.496.
    [8] Schulter S, Vernaza P, Choi W, et al. Deep network flow for multi-object tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 2730–2739. doi: 10.1109/CVPR.2017.292.
    [9] LI Shuai, KONG Yu, and REZATOFIGHI H. Learning of global objective for network flow in multi-object tracking[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8845–8855. doi: 10.1109/CVPR52688.2022.00865.
    [10] 刘雅婷, 王坤峰, 王飞跃. 基于踪片Tracklet关联的视觉目标跟踪: 现状与展望[J]. 自动化学报, 2017, 43(11): 1869–1885. doi: 10.16383/j.aas.2017.c170117.

    LIU Yating, WANG Kunfeng, and WANG Feiyue. Tracklet association-based visual object tracking: The state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(11): 1869–1885. doi: 10.16383/j.aas.2017.c170117.
    [11] BOCHINSKI E, EISELEIN V, and SIKORA T. High-speed tracking-by-detection without using image information[C]. 2017 14th IEEE International Conference on Advanced Video and Signal based Surveillance, Lecce, Italy, 2017: 1–6. doi: 10.1109/AVSS.2017.8078516.
    [12] DEHGHAN A, ASSARI S M, and SHAH M. GMMCP tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 4091–4099. doi: 10.1109/CVPR.2015.7299036.
    [13] ZAMIR A R, DEHGHAN A, and SHAH M. GMCP-tracker: Global multi-object tracking using generalized minimum clique graphs[C]. 12th European Conference on Computer Vision, Florence, Italy, 2012: 343–356. doi: 10.1007/978-3-642-33709-3_25.
    [14] WEN Longyin, LI Wenbo, YAN Junjie, et al. Multiple target tracking based on undirected hierarchical relation hypergraph[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1282–1289. doi: 10.1109/CVPR.2014.167.
    [15] CHOI W. Near-online multi-target tracking with aggregated local flow descriptor[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 3029–3037. doi: 10.1109/ICCV.2015.347.
    [16] SHEN Jianbing, LIANG Zhiyuan, LIU Jianhong, et al. Multiobject tracking by submodular optimization[J]. IEEE Transactions on Cybernetics, 2019, 49(6): 1990–2001. doi: 10.1109/TCYB.2018.2803217.
    [17] NAHON R, BILODEAU G A, and PESANT G. Improving tracking with a tracklet associator[C]. 2022 9th Conference on Robots and Vision, Toronto, Canada, 2022: 175–182. doi: 10.1109/CRV55824.2022.00030.
    [18] WU Hai, LI Qing, WEN Chenglu, et al. Tracklet proposal network for multi-object tracking on point clouds[C]. The Thirtieth International Joint Conference on Artificial Intelligence, Montreal, Canada, 2021: 1165–1171. doi: 10.24963/ijcai.2021/161.
    [19] DAI Peng, WENG Renliang, CHOI W, et al. Learning a proposal classifier for multiple object tracking[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2443–2452. doi: 10.1109/CVPR46437.2021.00247.
    [20] GALVÃO R D. Uncapacitated facility location problems: Contributions[J]. Pesquisa Operacional, 2004, 24(1): 7–38. doi: 10.1590/S0101-74382004000100003.
    [21] JIANG Zhuolin and DAVIS L S. Submodular salient region detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2043–2050. doi: 10.1109/CVPR.2013.266.
    [22] LAZIC N, GIVONI I, FREY B, et al. FLoSS: Facility location for subspace segmentation[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 825–832. doi: 10.1109/ICCV.2009.5459302.
    [23] VERTER V. Uncapacitated and capacitated facility location problems[M]. EISELT H and MARIANOV V. Foundations of Location Analysis. New York: Springer, 2011: 25–37. doi: 10.1007/978-1-4419-7572-0_2.
    [24] FELDMAN M, HARSHAW C, and KARBASI A. Greed is good: Near-optimal submodular maximization via greedy optimization[C]. The 30th Conference on Learning Theory, Amsterdam, Netherlands, 2017: 758–784.
    [25] NEMHAUSER G L and WOLSEY L A. Best algorithms for approximating the maximum of a submodular set function[J]. Mathematics of Operations Research, 1978, 3(3): 177–264. doi: 10.1287/moor.3.3.177.
    [26] BALKANSKI E, QIAN S, and SINGER Y. Instance specific approximations for submodular maximization[C]. The 38th International Conference on Machine Learning, Chongqing, China, 2021: 609–618.
    [27] WOJKE N, BEWLEY A, and PAULUS D. Simple online and realtime tracking with a deep association metric[C]. 2017 IEEE International Conference on Image Processing, Beijing, China, 2017: 3645–3649. doi: 10.1109/ICIP.2017.8296962.
    [28] BERNARDIN K and STIEFELHAGEN R. Evaluating multiple object tracking performance: The clear mot metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 2008: 246309. doi: 10.1155/2008/246309.
    [29] DADGAR A, BALEGHI Y, and EZOJI M. Multi-View data fusion in multi-object tracking with probability density-based ordered weighted aggregation[J]. Optik, 2022, 262: 169279. doi: 10.1016/j.ijleo.2022.169279.
    [30] SHI Xinchu, LING Haibin, PANG Yu, et al. Rank-1 tensor approximation for high-order association in multi-target tracking[J]. International Journal of Computer Vision, 2019, 127(8): 1063–1083. doi: 10.1007/s11263-018-01147-z.
    [31] TESFAYE Y T, ZEMENE E, PELILLO M, et al. Multi‐object tracking using dominant sets[J]. IET Computer Vision, 2016, 10(4): 289–298. doi: 10.1049/iet-cvi.2015.0297.
    [32] CHEN Jiahui, SHENG Hao, ZHANG Yang, et al. Enhancing detection model for multiple hypothesis tracking[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 2143–2152. doi: 10.1109/CVPRW.2017.266.
    [33] KEUPER M, TANG Siyu, ANDRES B, et al. Motion segmentation & multiple object tracking by correlation co-clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 140–153. doi: 10.1109/TPAMI.2018.2876253.
    [34] BRASÓ G and LEAL-TAIXÉ L. Learning a neural solver for multiple object tracking[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, USA, 2020: 6246–6256. doi: 10.1109/CVPR42600.2020.00628.
    [35] HENSCHEL R, ZOU Yunzhe, and ROSENHAHN B. Multiple people tracking using body and joint detections[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 770–779. doi: 10.1109/CVPRW.2019.00105.
    [36] ZHANG Yang, SHENG Hao, WU Yubin, et al. Long-term tracking with deep tracklet association[J]. IEEE Transactions on Image Processing, 2020, 29: 6694–6706. doi: 10.1109/TIP.2020.2993073.
    [37] YOON Y C, KIM D Y, and SONG Y M. Online multiple pedestrians tracking using deep temporal appearance matching association[J]. Information Sciences, 2021, 561: 326–351. doi: 10.1016/j.ins.2020.10.002.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  238
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 修回日期:  2023-11-06
  • 网络出版日期:  2023-11-14
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回