高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非局域性正交乘积态的动态量子秘密共享方案

宋秀丽 李闯

宋秀丽, 李闯. 基于非局域性正交乘积态的动态量子秘密共享方案[J]. 电子与信息学报, 2024, 46(3): 1109-1118. doi: 10.11999/JEIT230193
引用本文: 宋秀丽, 李闯. 基于非局域性正交乘积态的动态量子秘密共享方案[J]. 电子与信息学报, 2024, 46(3): 1109-1118. doi: 10.11999/JEIT230193
SONG Xiuli, LI Chuang. Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1109-1118. doi: 10.11999/JEIT230193
Citation: SONG Xiuli, LI Chuang. Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1109-1118. doi: 10.11999/JEIT230193

基于非局域性正交乘积态的动态量子秘密共享方案

doi: 10.11999/JEIT230193
基金项目: 国家自然科学基金(62376047),河南省网络密码技术重点实验室(LNCT2022-A15),重庆邮电大学博士启动基金(A2020211),重庆自然科学基金(CSTB2023NSCQ-MSX1093)
详细信息
    作者简介:

    宋秀丽:女,博士,副教授,研究方向为量子密码学、量子保密通信、云计算安全和车联网安全

    李闯:男,硕士生,研究方向为量子密码学

    通讯作者:

    宋秀丽 songxl@cqupt.edu.cn

  • 中图分类号: TN918; TP309

Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States

Funds: The National Natural Science Foundation of China (62376047), Henan Key Laboratory of Network Cryptography Technology (LNCT2022-A15), Doctor Initiation Found Project of Chongqing University of Posts and Telecommunications (A2020211), The Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX1093)
  • 摘要: 当前的量子秘密共享(QSS)存在资源制备开销较大、安全性不强的问题,该文提出一种基于正交乘积态的可验证量子秘密共享方案弥补上述不足,且多方成员能动态地加入或退出秘密共享。该方案将正交乘积态的粒子分成两个序列,第1个序列在多个参与者之间传输,前一个参与者对其执行嵌入份额值的酉算子后传输给下一个参与者,直到全部份额聚合完成;对于另一个序列,只有最后一个参与者(验证者)对接收到的粒子执行Oracle算子。然后,验证者对两个序列中的粒子对执行全局测量,得到秘密值的平方剩余。最后,借鉴Rabin密码中密文与明文之间非单一映射的思想,验证者联合Alice验证测量结果的正确性,并从测量结果确定出秘密值。安全性分析表明,该方案能抵抗常见的外部攻击和内部攻击,且验证过程具有强安全性;由于非局域性正交乘积态以两个序列分开传输,因此增强了秘密重构过程的安全性。性能分析表明,该方案使用正交乘积态作为信息载体,量子资源开销较小,且将正交乘积基的维度从低维拓展到d维,参与者人数能动态地增加和减少,使得方案具有更好的灵活性和通用性。
  • 图  1  方案主体流程图

    表  1  相似方案的性能比较

    属性文献[7]文献[13]本文方案
    信息粒子类型3维OPB态2维OPB态d维OPB态
    粒子数量m$ {2^{m - 1}} \cdot l $2m
    计算消耗$m({{\rm{QFT}}} + {{\rm{IQFT}}})/2$$l \cdot {\boldsymbol{U}} + (l + 1){\boldsymbol{M}} + {\boldsymbol{O}} + 1/3({\boldsymbol{F}} + {{\boldsymbol{F}}^\dagger } + {\boldsymbol{U}})$
    参与者人数两方固定多方固定多方动态
    测量消耗$ m $次单粒子测量$ l $次OPB测量1次OPB测量
    下载: 导出CSV

    表  2  相似动态QSS方案的安全性比较

    安全性文献[16]文献[18]文献[21]本文方案
    抗截获-重放攻击性
    抗纠缠-测量攻击性
    抗合谋攻击性
    抗欺骗攻击
    抗共享秘密的泄露攻击
    下载: 导出CSV
  • [1] HILLERY M, BUŽEK V, and BERTHIAUME A. Quantum secret sharing[J]. Physical Review A, 1999, 59(3): 1829–1834. doi: 10.1103/PhysRevA.59.1829.
    [2] KARLSSON A, KOASHI M, and IMOTO N. Quantum entanglement for secret sharing and secret splitting[J]. Physical Review A, 1999, 59(1): 162–168. doi: 10.1103/PhysRevA.59.162.
    [3] 杜宇韬, 鲍皖苏, 李坦. 基于秘密认证的可验证量子秘密共享协议[J]. 电子与信息学报, 2021, 43(1): 212–217. doi: 10.11999/JEIT190901.

    DU Yutao, BAO Wansu, and LI Tan. Verifiable quantum secret sharing protocol based on secret authentication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 212–217. doi: 10.11999/JEIT190901.
    [4] BAI Chenming, ZHANG Sujuan, and LIU Lu. Verifiable quantum secret sharing scheme using d-dimensional GHZ state[J]. International Journal of Theoretical Physics, 2021, 60(10): 3993–4005. doi: 10.1007/s10773-021-04955-1.
    [5] HSU L Y and LI Cheming. Quantum secret sharing using product states[J]. Physical Review A, 2005, 71(2): 022321. doi: 10.1103/PhysRev.A.71.022321.
    [6] YANG Yuguang, WEN Qiaoyun, and ZHU Fuchen. An efficient quantum secret sharing protocol with orthogonal product states[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2007, 50(3): 331–338. doi: 10.1007/s11433-007-0028-8.
    [7] XU Juan and YUAN Jiabing. Improvement and extension of quantum secret sharing using orthogonal product states[J]. International Journal of Quantum Information, 2014, 12(1): 1450008. doi: 10.1142/S0219749914500087.
    [8] BENNETT C H, DIVINCENZO D P, MOR T, et al. Unextendible product bases and bound entanglement[J]. Physical Review Letters, 1999, 82(26): 5385–5388. doi: 10.1103/PhysRevLett.82.5385.
    [9] WALGATE J and HARDY L. Nonlocality, asymmetry, and distinguishing bipartite states[J]. Physical Review Letters, 2002, 89(14): 147901. doi: 10.1103/PhysRevLett.89.147901.
    [10] ZHEN Xiaofan, FEI Shaoming, and ZUO Huijuan. Nonlocality without entanglement in general multipartite quantum systems[J]. Physical Review A, 2022, 106(6): 062432. doi: 10.1103/PhysRevA.106.062432.
    [11] XU Guangbao and JIANG Donghuan. Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system[J]. Quantum Information Processing, 2021, 20(4): 128. doi: 10.1007/s11128-021-03062-8.
    [12] JIANG Donghuan, YUAN Fei, and XU Guangbao. Novel quantum group signature scheme based on orthogonal product states[J]. Modern Physics Letters B, 2021, 35(26): 2150418. doi: 10.1142/S0217984921504182.
    [13] FU Sijia, ZHANG Kejia, ZHANG Long, et al. A new non-entangled quantum secret sharing protocol among different nodes in further quantum networks[J]. Frontiers in Physics, 2022, 10: 1021113. doi: 10.3389/fphy.2022.1021113.
    [14] HSU J L, CHONG Songkong, HWANG T, et al. Dynamic quantum secret sharing[J]. Quantum Information Processing, 2013, 12(1): 331–344. doi: 10.1007/s11128-012-0380-0.
    [15] WANG Tianying and LI Yanping. Cryptanalysis of dynamic quantum secret sharing[J]. Quantum Information Processing, 2013, 12(5): 1991–1997. doi: 10.1007/s11128-012-0508-2.
    [16] DU Yutao and BAO Wansu. Dynamic quantum secret sharing protocol based on two-particle transform of Bell states[J]. Chinese Physics B, 2018, 27(8): 080304. doi: 10.1088/1674-1056/27/8/080304.
    [17] GAO Gan, WEI Changcheng, and WANG Dong. Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states[J]. Quantum Information Processing, 2019, 18(6): 186. doi: 10.1007/s11128-019-2301-y.
    [18] LI Fulin, CHEN Tingyan, and ZHU Shixin. Dynamic (t, n) threshold quantum secret sharing based on d-dimensional Bell state[J]. Physica A:Statistical Mechanics and its Applications, 2022, 606: 128122. doi: 10.1016/j.physa.2022.128122.
    [19] SMALL C. A simple proof of the four-squares theorem[J]. The American Mathematical Monthly, 1982, 89(1): 59–61. doi: 10.1080/00029890.1982.11995381.
    [20] DE VOS A and DE BAERDEMACKER S. From reversible computation to quantum computation by Lagrange interpolation[EB/OL]. http://arXiv.org/abs/1502.00819, 2015.
    [21] YANG Chunwei and TSAI C W. Efficient and secure dynamic quantum secret sharing protocol based on bell states[J]. Quantum Information Processing, 2020, 19(5): 162. doi: 10.1007/s11128-020-02662-0.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  157
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-06-18
  • 网络出版日期:  2023-06-26
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回