高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低复杂度水声多输入多输出正交时频空调制通信方法研究

王彪 方梓德 朱雨男 郭晓鹏 朱柏宇

王彪, 方梓德, 朱雨男, 郭晓鹏, 朱柏宇. 低复杂度水声多输入多输出正交时频空调制通信方法研究[J]. 电子与信息学报, 2024, 46(1): 83-91. doi: 10.11999/JEIT230183
引用本文: 王彪, 方梓德, 朱雨男, 郭晓鹏, 朱柏宇. 低复杂度水声多输入多输出正交时频空调制通信方法研究[J]. 电子与信息学报, 2024, 46(1): 83-91. doi: 10.11999/JEIT230183
WANG Biao, FANG Zide, ZHU Yunan, GUO Xiaopeng, ZHU Boyu. Research on Low Complexity Underwater Acoustic Multiple Input Multiple Output Orthogonal Time Frequency Space Modulation Communication Method[J]. Journal of Electronics & Information Technology, 2024, 46(1): 83-91. doi: 10.11999/JEIT230183
Citation: WANG Biao, FANG Zide, ZHU Yunan, GUO Xiaopeng, ZHU Boyu. Research on Low Complexity Underwater Acoustic Multiple Input Multiple Output Orthogonal Time Frequency Space Modulation Communication Method[J]. Journal of Electronics & Information Technology, 2024, 46(1): 83-91. doi: 10.11999/JEIT230183

低复杂度水声多输入多输出正交时频空调制通信方法研究

doi: 10.11999/JEIT230183
基金项目: 国家自然科学基金(52071164),江苏省研究生科研与实践创新计划(KYCX23_3908)
详细信息
    作者简介:

    王彪:男,教授,研究方向为水下阵列信号处理、水声通信与水下传感器网络

    方梓德:男,硕士生,研究方向为水声信号处理

    朱雨男:男,博士生,研究方向为水声信号处理

    郭晓鹏:男,硕士生,研究方向为水声信号处理

    朱柏宇:男,硕士生,研究方向为水声信号处理

    通讯作者:

    方梓德 211110304102@stu.just.edu.cn

  • 中图分类号: TN929.3

Research on Low Complexity Underwater Acoustic Multiple Input Multiple Output Orthogonal Time Frequency Space Modulation Communication Method

Funds: The National Natural Science Foundation of China (52071164), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_3908)
  • 摘要: 在多输入多输出正交时频空调制(MIMO-OTFS)水声通信系统中,基于消息传递(MP)算法的MIMO-OTFS通信的计算复杂度较高,在实际应用中会增加设备成本。针对上述问题,该文提出一种基于2维虚拟时间反转镜(VTRM)的MIMO-OTFS均衡算法,该算法利用VTRM的时频空聚焦特性,有效提高了均衡性能,并通过改进的2维比例归一化最小均方(IPNLMS)算法进行信道估计,该算法利用时延-多普勒域信道的稀疏特性以较低的复杂度提高了收敛速度,最后通过2维自适应判决反馈均衡算法消除残余的码间串扰,进一步提高系统性能。仿真结果表明,所提均衡算法具有可行性,且在保证相同性能时,复杂度低于MP算法。
  • 图  1  SISO-OTFS系统模型框图

    图  2  MIMO-OTFS系统模型框图

    图  3  2D-DFE流程框图

    图  4  导频符号结构

    图  5  仿真时变水声信道

    图  6  收敛速度

    图  7  收敛性能随信噪比的变化

    图  8  2D-VTRM处理后的等效信道

    图  9  误码率性能随信噪比的变化

    表  1  仿真参数

    仿真参数符号
    发射阵元数$ {N_{\text{t}}} $2
    接收阵元数$ {N_{\text{r}}} $6
    子载波数M512
    符号数N128
    最低子载波频率$ {f_0} $12 kHz
    信号带宽B4 kHz
    子载波间隔$ \Delta f $7.81 Hz
    OTFS符号周期$ {T_{\text{s}}} $0.25 ms
    循环前缀时长${T_{ \rm{CP} } }$32 ms
    OTFS帧时长${T_{ \rm{OTFS} } }$20.48 s
    下载: 导出CSV
  • [1] STOJANOVIC M and PREISIG J. Underwater acoustic communication channels: Propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89. doi: 10.1109/MCOM.2009.4752682
    [2] AVRASHI G, AMAR A, and COHEN I. Time-varying carrier frequency offset estimation in OFDM underwater acoustic communication[J]. Signal Processing, 2022, 190: 108299. doi: 10.1016/j.sigpro.2021.108299
    [3] JIA Shuyang, ZOU Sichen, ZHANG Xiaochuan, et al. Multi-block Sparse Bayesian learning channel estimation for OFDM underwater acoustic communication based on fractional Fourier transform[J]. Applied Acoustics, 2022, 192: 108721. doi: 10.1016/j.apacoust.2022.108721
    [4] ZHANG Yonglin, LI Chao, WANG Haibin, et al. Deep learning aided OFDM receiver for underwater acoustic communications[J]. Applied Acoustics, 2022, 187: 108515. doi: 10.1016/j.apacoust.2021.108515
    [5] WANG Zhizhan, LI Yuzhou, WANG Chengcai, et al. A-OMP: An adaptive OMP algorithm for underwater acoustic OFDM channel estimation[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1761–1765. doi: 10.1109/LWC.2021.3079225
    [6] 朱雨男, 解方彤, 张明亮, 等. 基于多层双向长短时记忆网络的水声多载波通信索引检测方法[J]. 电子与信息学报, 2022, 44(6): 1984–1990. doi: 10.11999/JEIT210949

    ZHU Yunan, XIE Fangtong, ZHANG Mingliang, et al. Index detection for underwater acoustic multi-carrier communication based on deep bidirectional long short-term memory network[J]. Journal of Electronics &Information Technology, 2022, 44(6): 1984–1990. doi: 10.11999/JEIT210949
    [7] WANG Tiejun, PROAKIS J G, MASRY E, et al. Performance degradation of OFDM systems due to Doppler spreading[J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1422–1432. doi: 10.1109/TWC.2006.1638663
    [8] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6.
    [9] REZAZADEHREYHANI A, FARHANG A, JI Mingyue, et al. Analysis of discrete-time MIMO OFDM-based orthogonal time frequency space modulation[C]. 2018 IEEE International Conference on Communications, Kansas City, USA, 2018: 1–6.
    [10] LI Shuangyang, YUAN Jinhong, YUAN Weijie, et al. Performance analysis of coded OTFS systems over high-mobility channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 6033–6048. doi: 10.1109/TWC.2021.3071493
    [11] WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi: 10.1109/MWC.001.2000408
    [12] WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation[J]. IEEE Transactions on Communications, 2021, 69(4): 2207–2223. doi: 10.1109/TCOMM.2021.3051386
    [13] RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011
    [14] MURALI K R and CHOCKALINGAM A. On OTFS modulation for high-Doppler fading channels[C]. 2018 Information Theory and Applications Workshop, San Diego, USA, 2018: 1–10.
    [15] JING Lianyou, ZHANG Namin, HE Chengbing, et al. OTFS underwater acoustic communications based on passive time reversal[J]. Applied Acoustics, 2022, 185: 108386. doi: 10.1016/j.apacoust.2021.108386
    [16] RAMACHANDRAN M K and CHOCKALINGAM A. MIMO-OTFS in high-Doppler fading channels: Signal detection and channel estimation[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 206–212.
    [17] SURABHI G D and CHOCKALINGAM A. Low-complexity linear equalization for 2×2 MIMO-OTFS signals[C]. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications, Atlanta, USA, 2020: 1–5.
    [18] LI Muye, ZHANG Shun, GAO Feifei, et al. A new path division multiple access for the massive MIMO-OTFS networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 903–918. doi: 10.1109/JSAC.2020.3018826
    [19] BOCUS M J, DOUFEXI A, and AGRAFIOTIS D. Performance of OFDM‐based massive MIMO OTFS systems for underwater acoustic communication[J]. IET Communications, 2020, 14(4): 588–593. doi: 10.1049/iet-com.2019.0376
    [20] HADHOUD M M and THOMAS D W. The two-dimensional adaptive LMS (TDLMS) algorithm[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5): 485–494. doi: 10.1109/31.1775
    [21] JING Lianyou, WANG Han, HE Chengbing, et al. Two dimensional adaptive multichannel decision feedback equalization for OTFS system[J]. IEEE Communications Letters, 2021, 25(3): 840–844. doi: 10.1109/LCOMM.2020.3039982
    [22] QARABAQI P and STOJANOVIC M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 701–717. doi: 10.1109/JOE.2013.2278787
    [23] SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411
    [24] BENESTY J and GAY S L. An improved PNLMS algorithm[C]. Proceedings of 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, USA, 2002: II-1881–II-1884.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  187
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2023-09-05
  • 网络出版日期:  2023-09-11
  • 刊出日期:  2024-01-17

目录

    /

    返回文章
    返回