高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深层特征差异性网络的图像超分辨率算法

程德强 袁航 钱建生 寇旗旗 江鹤

程德强, 袁航, 钱建生, 寇旗旗, 江鹤. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179
引用本文: 程德强, 袁航, 钱建生, 寇旗旗, 江鹤. 基于深层特征差异性网络的图像超分辨率算法[J]. 电子与信息学报, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179
CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179
Citation: CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179

基于深层特征差异性网络的图像超分辨率算法

doi: 10.11999/JEIT230179
基金项目: 国家自然科学基金 (52204177, 52304182),中央高校基本科研业务费专项资金 (2020QN49)
详细信息
    作者简介:

    程德强:男,博士生导师,教授,主要研究方向为图像智能监测与模式识别 ,图像处理与视频编码等

    袁航:男,硕士生,研究方向为图像超分辨率重建

    钱建生:男,教授,主要研究方向为宽带网络技术及应用,矿井通信与监控等

    寇旗旗:男,讲师,主要研究方向为视频图像处理,模式识别等

    江鹤:男,讲师,主要研究方向为图像超分辨率重建,图像识别等

    通讯作者:

    江鹤 jianghe@cumt.edu.cn

  • 中图分类号: TN911.73; TP391

Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network

Funds: The National Natural Science Foundation of China (52204177, 52304182), The Fundamental Research Funds for the Central Universities (2020QN49)
  • 摘要: 传统深层神经网络通常以跳跃连接等方式堆叠深层特征,这种方式容易造成信息冗余。为了提高深层特征信息的利用率,该文提出一种深层特征差异性网络(DFDN),并将其应用于单幅图像超分辨率重建。首先,提出相互投影融合模块(MPFB)提取多尺度深层特征差异性信息并融合,以减少网络传输中上下文信息的损失。第二,提出了差异性特征注意力机制,在扩大网络感受野的同时进一步学习深层特征的差异。第三,以递归的形式连接各模块,增加网络的深度,实现特征复用。将DIV2K数据集作为训练数据集,用4个超分辨率基准数据集对预训练的模型进行测试,并通过与流行算法比较重建的图像获得结果。广泛的实验表明,与现有算法相比,所提算法可以学习到更丰富的纹理信息,并且在主观视觉效果和量化评价指标上都取得最好的排名,再次证明了其鲁棒性和优越性。
  • 图  1  整体网络结构图

    图  2  相互投影融合模块结构图

    图  3  DSA模块

    图  4  亚像素卷积

    图  5  Set14中barbara重建结果

    图  6  Urban100中Img075重建结果

    图  7  Urban100中Img092的重建结果

    图  8  Set5中head的差异图

    图  9  B100中291000的差异图

    图  10  Urban100中Img027的差异图

    表  1  MPFB模块和DSA模块对模型性能的影响

    算法1算法2算法3算法4
    MPFB××
    DSA××
    PSNR
    (dB)
    32.1332.2432.2732.30
    SSIM0.92870.92960.93000.9301
    注:加粗字体为每行最优值。
    下载: 导出CSV

    表  2  缩放因子为2、3、4时在基准数据集下的指标对比

    模型 缩放因子 Set5[29] Set14[30] BSD100[31] Urban100[24]
    PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM PSNR(dB) SSIM
    SRCNN[11] X2 36.66 0.9542 32.43 0.9063 31.36 0.8879 29.50 0.8946
    VDSR[25] X2 37.54 0.9587 33.03 0.9124 31.90 0.8960 30.76 0.9140
    CARN[26] X2 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256
    MSRN[14] X2 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326
    IMDN[15] X2 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283
    OISR-RK2[17] X2 38.12 0.9609 33.80 0.9193 32.26 0.9006 32.48 0.9317
    LatticeNet[27] X2 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302
    SwinIR-light[28] X2 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340
    DID-D5[18] X2 38.15 0.9610 33.77 0.9190 32.27 0.9006 32.38 0.9305
    LBNet[19] X2
    NGswin[20] X2 38.05 0.9610 33.79 0.9199 32.27 0.9008 32.53 0.9324
    DFDN(本文) X2 38.19 0.9612 33.85 0.9199 32.3 0.9013 32.68 0.9335
    SRCNN[11] X3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989
    VDSR[25] X3 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279
    CARN[26] X3 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493
    MSRN[14] X3 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554
    IMDN[15] X3 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519
    OISR-RK2[17] X3 34.55 0.9282 30.46 0.8443 29.18 0.8075 28.50 0.8597
    LatticeNet[27] X3 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538
    SwinIR-light[28] X3 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624
    DID-D5[18] X3 34.55 0.9280 30.49 0.8446 29.19 0.8069 28.39 0.8566
    LBNet[19] X3 34.47 0.9277 30.38 0.8417 29.13 0.8061 28.42 0.8599
    NGswin [20] X3 34.52 0.9282 30.53 0.8456 29.19 0.8078 28.52 0.8603
    DFDN(本文) X3 34.69 0.9293 30.55 0.8464 29.25 0.8089 28.70 0.8630
    SRCNN[11] X4 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.53 0.7221
    VDSR[25] X4 31.35 0.8830 28.01 0.7680 27.29 0.7251 25.18 0.7543
    CARN[26] X4 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837
    MSRN[14] X4 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896
    IMDN[15] X4 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838
    OISR-RK2[17] X4 32.32 0.8965 28.72 0.7843 27.66 0.7390 26.37 0.7953
    LatticeNet[27] X4 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873
    SwinIR-light[28] X4 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980
    DID-D5[18] X4 32.33 0.8968 28.75 0.7852 27.68 0.7386 26.36 0.7933
    LBNet[19] X4 32.29 0.8960 28.68 0.7832 27.62 0.7382 26.27 0.7906
    NGswin [20] X4 32.33 0.8963 28.78 0.7859 27.66 0.7396 26.45 0.7963
    DFDN(本文) X4 32.56 0.8989 28.87 0.7880 27.73 0.7414 26.59 0.8008
    注:黑色加粗字体为每列最优值,蓝色加粗字体为每列次优值
    下载: 导出CSV

    表  3  不同MPFB数量对网络性能的影响

    模型参数量(M)PSNR(dB)SSIM时间(ms)
    M=11.9632.290.9300131
    M=2 (本文)3.5632.530.9328173
    M=35.1732.680.9338268
    注:加粗字体为每列最优值。
    下载: 导出CSV

    表  4  不同注意力模块对网络性能的影响

    模型ESADSA
    Set5PSNR/SSIM38.11/0.961138.16/0.9612
    Set14PSNR/SSIM33.60/0.919333.61/0.9191
    BSD100PSNR/SSIM32.27/0.901032.31/0.9011
    Urban100PSNR/SSIM32.39/0.931332.53/0.9328
    注:加粗字体为每行最优值。
    下载: 导出CSV

    表  5  通道数对网络性能的影响

    模型参数量(M)PSNR(dB)SSIM时间(ms)
    C16C16C160.8037.730.9599104
    C16C32C64
    (本文)
    3.5637.970.9607173
    C32C32C321.9537.900.9604143
    C32C32C643.8037.980.9607184
    C64C64C646.5538.040.9669232
    注:加粗字体为每列最优值。
    下载: 导出CSV

    表  6  不同残差块数量对网络性能的影响

    参数量(M)PSNR(dB)SSIM时间(ms)
    Res=22.4037.910.9604150
    Res=4
    (本文)
    3.5637.970.9607173
    Res=64.7338.010.9608216
    注:加粗字体为每列最优值。
    下载: 导出CSV

    表  7  不同RFFB数量对网络性能的影响

    参数量(M)PSNR(dB)SSIM时间(ms)
    D=21.3926.080.7858113
    D=3
    (本文)
    2.0026.240.7903153
    D=42.6226.340.7941207
    注:加粗字体为每列最优值。
    下载: 导出CSV

    表  8  与基于Transformer算法的对比

    模型参数量(M)PSNR(dB)SSIM
    LBNet[19]0.7232.290.8960
    SwinIR[28]11.832.720.9021
    SwinIR-light[28]0.8832.440.8976
    NGswin[20]1.0032.330.8963
    DFDN
    (本文)
    3.8632.560.8989
    注:加粗字体为每列最优值。
    下载: 导出CSV
  • [1] 陈嘉琪, 刘祥梅, 李宁, 等. 一种超分辨SAR图像水域分割算法及其应用[J]. 电子与信息学报, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366.

    CHEN Jiaqi, LIU Xiangmei, LI Ning, et al. A high-precision water segmentation algorithm for SAR image and its application[J]. Journal of Electronics & Information Technology, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366.
    [2] 陈书贞, 曹世鹏, 崔美玥, 等. 基于深度多级小波变换的图像盲去模糊算法[J]. 电子与信息学报, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947.

    CHEN Shuzhen, CAO Shipeng, CUI Meiyue, et al. Image blind deblurring algorithm based on deep multi-level wavelet transform[J]. Journal of Electronics & Information Technology, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947.
    [3] 何鹏浩, 余映, 徐超越. 基于动态金字塔和子空间注意力的图像超分辨率重建网络[J]. 计算机科学, 2022, 49(S2): 210900202. doi: 10.11896/jsjkx.210900202.

    HE Penghao, YU Ying, and XU Chaoyue. Image super-resolution reconstruction network based on dynamic pyramid and subspace attention[J]. Computer Science, 2022, 49(S2): 210900202. doi: 10.11896/jsjkx.210900202.
    [4] 马子杰, 赵玺竣, 任国强, 等. 群稀疏高斯洛伦兹混合先验超分辨率重建[J]. 光电工程, 2021, 48(11): 210299. doi: 10.12086/oee.2021.210299.

    MA Zijie, ZHAO Xijun, REN Guoqiang, et al. Gauss-Lorenz hybrid prior super resolution reconstruction with mixed sparse representation[J]. Opto-Electronic Engineering, 2021, 48(11): 210299. doi: 10.12086/oee.2021.210299.
    [5] 黄友文, 唐欣, 周斌. 结合双注意力和结构相似度量的图像超分辨率重建网络[J]. 液晶与显示, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.

    HUANG Youwen, TANG Xin, and ZHOU Bin. Image super-resolution reconstruction network with dual attention and structural similarity measure[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.
    [6] OOI Y K and IBRAHIM H. Deep learning algorithms for single image super-resolution: A systematic review[J]. Electronics, 2021, 10(7): 867. doi: 10.3390/ELECTRONICS10070867.
    [7] CHEN Hanting, WANG Yunhe, GUO Tianyu, et al. Pre-trained image processing transformer[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12294–12305. doi: 10.1109/CVPR46437.2021.01212.
    [8] WANG Xuan, YI Jinglei, GUO Jian, et al. A review of image super-resolution approaches based on deep learning and applications in remote sensing[J]. Remote Sensing, 2022, 14(21): 5423. doi: 10.3390/RS14215423.
    [9] YANG Jianchao, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587647.
    [10] 程德强, 陈亮亮, 蔡迎春, 等. 边缘融合的多字典超分辨率图像重建算法[J]. 煤炭学报, 2018, 43(7): 2084–2090. doi: 10.13225/j.cnki.jccs.2017.1263.

    CHENG Deqiang, CHEN Liangliang, CAI Yingchun, et al. Image super-resolution reconstruction based on multi-dictionary and edge fusion[J]. Journal of China Coal Society, 2018, 43(7): 2084–2090. doi: 10.13225/j.cnki.jccs.2017.1263.
    [11] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281.
    [12] SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
    [13] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1132–1140. doi: 10.1109/CVPRW.2017.151.
    [14] LI Juncheng, FANG Faming, MEI Kangfu, et al. Multi-scale residual network for image super-resolution[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 527–542. doi: 10.1007/978-3-030-01237-3_32.
    [15] HUI Zheng, GAO Xinbo, YANG Yunchu, et al. Lightweight image super-resolution with information multi-distillation network[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 2024–2032. doi: 10.1145/3343031.3351084.
    [16] 程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605–618. doi: 10.11834/jig.200108.

    CHENG Deqiang, GUO Xin, CHEN Liangliang, et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics, 2021, 26(3): 605–618. doi: 10.11834/jig.200108.
    [17] HE Xiangyu, MO Zitao, WANG Peisong, et al. ODE-inspired network design for single image super-resolution[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1732–1741. doi: 10.1109/CVPR.2019.00183.
    [18] LI Longxi, FENG Hesen, ZHENG Bing, et al. DID: A nested dense in dense structure with variable local dense blocks for super-resolution image reconstruction[C]. 2020 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 2582–2589. doi: 10.1109/ICPR48806.2021.9413036.
    [19] GAO Guangwei, WANG Zhengxue, LI Juncheng, et al. Lightweight bimodal network for single-image super-resolution via symmetric CNN and recursive transformer[C]. The Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 913–919. doi: 10.24963/ijcai.2022/128.
    [20] CHOI H, LEE J, and YANG J. N-gram in Swin transformers for efficient lightweight image super-resolution[C]. The IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2071–2081. doi: 10.1109/CVPR52729.2023.00206.
    [21] HARIS M, SHAKHNAROVICH G, and UKITA N. Deep back-projection networks for super-resolution[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1664–1673. doi: 10.1109/CVPR.2018.00179.
    [22] LIU Jie, ZHANG Wenjie, TANG Yuting, et al. Residual feature aggregation network for image super-resolution[C]. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2356–2365. doi: 10.1109/CVPR42600.2020.00243.
    [23] DAI Tao, CAI Jianeui, ZHANG Yongbing, et al. Second-order attention network for single image super-resolution[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11057–11066. doi: 10.1109/CVPR.2019.01132.
    [24] HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
    [25] KIM J, LEE J K, and LEE K M. 2016. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    [26] AHN N, KANG B, and SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 256–272. doi: 10.1007/978-3-030-01249-6_16.
    [27] LUO Xiaotong, XIE Yuan, ZHANG Yulun, et al. LatticeNet: Towards lightweight image super-resolution with lattice block[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 272–289. doi: 10.1007/978-3-030-58542-6_17.
    [28] LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. The IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844. doi: 10.1109/ICCVW54120.2021.00210.
    [29] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]. British Machine Vision Conference, Surrey, UK, 2012: 1–10.
    [30] ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. The 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730. doi: 10.1007/978-3-642-27413-8_47.
    [31] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. doi: 10.1109/ICCV.2001.937655.
  • 加载中
图(10) / 表(8)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  286
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2022-11-02
  • 录用日期:  2023-12-18
  • 网络出版日期:  2023-12-25
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回