高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可重构智能反射面辅助太赫兹通信系统鲁棒波束赋形算法

袁一铭 徐勇军 周继华

袁一铭, 徐勇军, 周继华. 可重构智能反射面辅助太赫兹通信系统鲁棒波束赋形算法[J]. 电子与信息学报, 2024, 46(3): 808-816. doi: 10.11999/JEIT230160
引用本文: 袁一铭, 徐勇军, 周继华. 可重构智能反射面辅助太赫兹通信系统鲁棒波束赋形算法[J]. 电子与信息学报, 2024, 46(3): 808-816. doi: 10.11999/JEIT230160
YUAN Yiming, XU Yongjun, ZHOU Jihua. Robust Beamforming Algorithm for Terahertz Communication Systems Aided by Reconfigurable Intelligent Surfaces[J]. Journal of Electronics & Information Technology, 2024, 46(3): 808-816. doi: 10.11999/JEIT230160
Citation: YUAN Yiming, XU Yongjun, ZHOU Jihua. Robust Beamforming Algorithm for Terahertz Communication Systems Aided by Reconfigurable Intelligent Surfaces[J]. Journal of Electronics & Information Technology, 2024, 46(3): 808-816. doi: 10.11999/JEIT230160

可重构智能反射面辅助太赫兹通信系统鲁棒波束赋形算法

doi: 10.11999/JEIT230160
基金项目: 国家自然科学基金(62271094),重庆市自然科学基金(CSTB2022NSCQ-LZX0009),重庆市教委科学技术研究项目(KJZD-K202200601),浙江省信息处理与通信网络重点实验室开放课题(IPCAN-2302),重庆研究生科研创新项目(CYB23241, CYS23450)
详细信息
    作者简介:

    袁一铭:男,博士生,研究方向为太赫兹通信、鲁棒资源分配

    徐勇军:男,副教授,博士生导师,研究方向为太赫兹通信、鲁棒资源分配等

    周继华:男,研究员,博士生导师,研究方向为无线网络、资源分配等

    通讯作者:

    徐勇军 xuyj@cqupt.edu.cn

  • 11当通信系统CSI受到恶劣电磁环境影响或RIS/收发机硬件处理能力受限时,通信网络所有的信道链路都可能存在不确定性,仅假设部分CSI不确定性算法在实际系统中将失效。2离散相移使得原连续变量耦合问题变为离散变量优化问题,这增加了RIS被动波束的求解难度;此外,所有链路CSI误差会使得所有与信道参数相关的约束条件和目标函数都存在不确定性,这是与传统部分CSI信息已知、总功率最小化问题最大的挑战之处。
  • 中图分类号: TN929.5

Robust Beamforming Algorithm for Terahertz Communication Systems Aided by Reconfigurable Intelligent Surfaces

Funds: The National Natural Science Foundation of China (62271094), The Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The Open Project of Zhejiang Provincial Key Laboratory of Information Processing, Communication and Networking, Zhejiang 310058, China (IPCAN-2302), Graduate Scientific Research Innovation Project of Chongqing (CYB23241, CYS23450)
  • 摘要: 太赫兹通信作为6G的关键技术之一,被认为是能够解决频谱资源短缺、提升系统容量的有效手段。然而,由于路径损耗极高和分子的吸收作用,太赫兹容易被障碍物阻挡导致通信中断。为了解决该问题,该文将可重构智能反射面(RIS)引入到太赫兹通信系统中,且考虑信道不确定性对传输稳定性的影响,基于用户服务质量约束、基站发射功率约束及RIS离散相移约束,建立多用户能效最大化波束赋形模型。利用丁克尔巴赫、连续凸近似、S-程序、半正定松弛、相位映射和块坐标下降将原非凸优化问题转化为凸优化问题进行求解。仿真结果表明,与传统非鲁棒波束赋形对比,所提算法能效提升了15.4%,中断概率减小了15.48%。
  • 图  1  RIS辅助的多用户太赫兹通信系统

    图  2  所提算法流程图

    图  3  系统能量效率与迭代次数关系

    图  4  系统能量效率与RIS反射阵元数量关系

    图  5  系统能量效率与基站天线数和归一化不确定性上界关系

    图  6  系统能量效率与量化比特关系

    图  7  系统能量效率在$ L = 2 $和$ L = 4 $时与反射阵元数量关系

    图  8  系统能量效率与归一化不确定性上界关系

    图  9  用户中断概率与归一化不确定性上界关系

    算法1 基于BCD的鲁棒波束赋形算法
     初始化系统参数:$M,N,K,\sigma _k^2,{P^{\max } },{P_{ {\text{BS} } } },{P_{ {\text{RIS} } } },R_k^{\min },\bar x_k^{(2)}$,
     $\bar x_k^{(3)},\bar \eta ,{\varepsilon _k},\mu $;
     设置$ \mu $的上界和下界使之满足$ {\mu ^{\min }} < = {\mu ^ * } < = {\mu ^{\max }} $;
     设置最大迭代次数$ {L_{\max }} $,收敛精度$ \varpi $,迭代索引$ l = 0 $;
     (1) While $ l < = {L_{\max }} $do
     (2)  $ \mu (l) = ({\mu ^{\min }} + {\mu ^{\max }})/2 $;
     (3)  初始化$ {{\boldsymbol{V}}_k} $,$ {\boldsymbol{\tilde \varTheta }} $;
     (4)  重复
     (5)   给定$ {\boldsymbol{\tilde \varTheta }} $,求解问题式(32)得到$ {{\boldsymbol{V}}_k}^{} $;
     (6)   更新$ {{\boldsymbol{V}}_k}^{} $;
     (7)  直到 收敛
     (8)  重复
     (9)   给定$ {{\boldsymbol{V}}_k}^{} $,求解问题式(34)得到$ {\boldsymbol{\tilde \varTheta }} $;
     (10)   更新$ {\boldsymbol{\tilde \varTheta }} $;
     (11) 直到 收敛
     (12) if $f(\mu (l)) \le \varpi$ then
     (13)   $ {{\boldsymbol{V}}_k}^ * = {{\boldsymbol{V}}_k}(l) $, $ {{\boldsymbol{\tilde \varTheta }}^{\boldsymbol{*}}} = {\boldsymbol{\tilde \varTheta }}(l) $,通过式(35)、式(16)分别得
         到$ {{\boldsymbol{\hat \varTheta }}^{\boldsymbol{*}}} $, $ \mu (l) $;
     (14)   break
     (15) else
     (16)   if $ f(\mu (l)) < 0 $ then
     (17)    $ {\mu ^{\max }} = \mu (l); $
     (18)   else
     (19)    $ {\mu ^{\min }} = \mu (l); $
     (20)   end if
     (21) end if
     (22) 设置迭代次数$ l = l + 1 $;
     (23) end while
    下载: 导出CSV

    表  1  仿真参数

    参数参数
    $ f $340 GHz${P^{\max } }$10 W
    ${G_{\rm{t}}}$1$\sigma _{}^2$10–8 W
    ${G_{\rm{r}}}$$ 4 + 20\lg \sqrt M $c$ 3 \times {10^8} \;({\text{m/s)}}$
    $ \varpi $10–3$ {L_{\max }} $20
    $ \tau (f) $0.0033 m$ K $2
    下载: 导出CSV
  • [1] CHEN Zhi, HAN Chong, WU Yongzhi, et al. Terahertz wireless communications for 2030 and beyond: A cutting-edge frontier[J]. IEEE Communications Magazine, 2021, 59(11): 66–72. doi: 10.1109/MCOM.011.2100195.
    [2] XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603.
    [3] 智能超表面技术联盟. 智能超表面技术白皮书[R]. 杭州, 中国, 2023.

    RIS TECH Alliance. Reconfigurable intelligent surface technology white paper[R]. Hangzhou, China, 2023.
    [4] SONG D, SHIN W, and LEE J. A maximum throughput design for wireless powered communication networks with IRS-NOMA[J]. IEEE Wireless Communications Letters, 2021, 10(4): 849–853. doi: 10.1109/LWC.2020.3046722.
    [5] HUA Meng and WU Qingqing. Joint dynamic passive beamforming and resource allocation for IRS-aided full-duplex WPCN[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 4829–4843. doi: 10.1109/TWC.2021.3133491.
    [6] 徐勇军, 徐然, 周继华, 等. 面向窃听用户的RIS-MISO系统鲁棒资源分配算法[J]. 电子与信息学报, 2022, 44(7): 2253–2263. doi: 10.11999/JEIT211537.

    XU Yongjun, XU Ran, ZHOU Jihua, et al. Robust Resource Allocation Algorithm for RIS-Assisted MISO Systems with Eavesdroppers[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2253–2263. doi: 10.11999/JEIT211537.
    [7] 刘志新, 赵松晗, 杨毅, 等. 智能反射面辅助的无人机无线携能通信网络吞吐量最大化算法研究[J]. 电子与信息学报, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195.

    LIU Zhixin, ZHAO Songhan, YANG Yi, et al. Throughput maximization algorithm for intelligent reflecting surface-aided unmanned aerial vehicle communication networks with wireless energy transfer[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2325–2331. doi: 10.11999/JEIT220195.
    [8] HUANG Chongwen, YANG Zhaohui, ALEXANDROPOULOS G C, et al. Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(6): 1663–1677. doi: 10.1109/JSAC.2021.3071836.
    [9] NING Boyu, WANG Peilan, LI Lingxiang, et al. Multi-IRS-aided multi-user MIMO in mmWave/THz communications: A space-orthogonal scheme[J]. IEEE Transactions on Communications, 2022, 70(12): 8138–8152. doi: 10.1109/TCOMM.2022.3216344.
    [10] MAMAGHANI M T and HONG Yi. Aerial intelligent reflecting surface-enabled terahertz covert communications in beyond-5G internet of things[J]. IEEE Internet of Things Journal, 2022, 9(19): 19012–19033. doi: 10.1109/JIOT.2022.3163396.
    [11] HAO Wanming, SUN Gangcan, ZENG Ming, et al. Robust design for intelligent reflecting surface-assisted MIMO-OFDMA terahertz IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(16): 13052–13064. doi: 10.1109/JIOT.2021.3064069.
    [12] ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Robust beamforming design for IRS-aided secure SWIPT terahertz systems with non-linear EH model[J]. IEEE Wireless Communications Letters, 2022, 11(4): 746–750. doi: 10.1109/LWC.2022.3142098.
    [13] QIAO Jingping, ZHANG Chuanting, DONG Anming, et al. Securing intelligent reflecting surface assisted terahertz systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8519–8533. doi: 10.1109/TVT.2022.3172763.
    [14] GAO Zhengnian, XU Yongjun, WANG Qianzhu, et al. Outage-constrained energy efficiency maximization for RIS-assisted WPCNs[J]. IEEE Communications Letters, 2021, 25(10): 3370–3374. doi: 10.1109/LCOMM.2021.3101657.
    [15] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [16] XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [17] XU Yongjun, XIE Hao, LIANG Chengchao, et al. Robust secure energy-efficiency optimization in Swipt-aided heterogeneous networks with a nonlinear energy-harvesting model[J]. IEEE Internet of Things Journal, 2021, 8(19): 14908–14919. doi: 10.1109/JIOT.2021.3072965.
    [18] DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492–498. doi: 10.1287/mnsc.13.7.492.
    [19] BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [20] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [21] QIAO Jingping and ALOUINI M S, Secure transmission for intelligent reflecting surface-assisted mmWave and terahertz systems[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1743–1747.
    [22] WANG Kunyu, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  193
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-07-08
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回